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AFIT/GE/ENG/91D-19

Abstract

This thesis presents a Time Dependent Adaptive Filter (TDAF) which exploits

the cyclostationarity of digitally modulated communications signals and seeks to im-

prove the Signal to Interference Ratio (SIR) and Signal to Noise Ratio (SNIR) of such

signals. The TDAF is imbedded in a computer simulation of a simple comimunica-

tion system consisting of a data source, data formatter, pu!se shaping filter, BPSK

modulator, and demodulator. In the simulation the TDAF and a Time Independent

Adaptive Filter (TIAF) attempt to extract the Signal of Interest (SOl) from noise

or interference. The criteria of Mean Squared Error (MSE) is used as the primary
means to compare the performance of the two adaptive filters. Plots of MSE im-

provement in interference and MSE improvement in noise are presented. For the
case of interference, the improvement is measured as a function of the baud rate of

the intereference signal, and carrier frequency of the interference signal. It is shown

that with respect to the TIAF, the TDAF provides up to 12 dB of improvement.

Bit Error Rates (BER) for several simulations are presented. The data indicate that

signficant improvements in BER might be expected when a TDAF is used in lieu of

a TIAF.

/

ix



A TIME-DEPENDENT ADAPTIVE FILTER

FOR COCHANNEL INTERFERENCE

REDUCTION

I. Introduction

1.1 Background

The advent of frequency reuse, particularly in satellite communications, has

made the task of recovering digitally modulated signals more challenging. Unuccu-

pied frequencies in the electromagnetic spectrum either do not exist or are imprac-

tical for use due to their high frequency or poor channel performance (in the 02

and H20 absorption bands, for instance). A single communication system may re-

use frequencies up to six times through polarization and spatial (antenna pointing)

reuse techniques. INTELSAT VI is an example of such a system (3:99).

The classical technique of applying the signal of interest (SOl) to a relatively

narrow passband filter can be of limited effectiveness when the SO] has been, cor-

rupted by another signal (or signals) not of interest (SNOI) whose spectral com-

ponents overlap those of the SOL. Of course, with only knowledge of the center

frequency and spectral width of the SO!1 a digital filter call be readily designed that

limits power outside the spectral region of interest (5:403-489). The impulse response

of sich a filter is fixed. Hence, if the characteristics of the SNOI changes, the filter

cannot appropriately adapt to tile new conditions.

If. on the other hand. the filter coefficients are allowed to vary so a-s to minimize

some error criteria, the impulse response will no longer be fixed. Then. even if the

characteristics of the SNOI change, the filter can adapt to a new 'optimum" solution.

Such a filter is referred to as a 'Time Independent Adaptive Filter' (T!AF); 'adaptive!

because the impulse response changes according to the characteristics of the input.
and time independent' because the changes in the impulse response are not an

explicit function of time, but rather a function only of the input to the filter. An

example of a TIAF is the adaptive linear combiner (ALC) (10:15-26).
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The error in a TIAF is a quadratic function of the filter weights; The quadratic

surface resembles a bowl (10:19, 20). The bottom of the bowl represents the mini-

mum error, and the filter strives to achieve that operatii g point. When the statistics

of the input are stationary or nearly stationary (change very-slowly), tie filter will be

able to achieve and maintain a nearly optimum configuration (11). Unfortunately,

all digitally modulated waveforms of interest in modern communication theory are

not stationary. They exhibit some periodicity in their statistics referred to as cyclo-

stationarity (2:16-18). The TIAF is in general not able to adapt quickly enough to

'track' the optimum solution that exists for a cyclostationary SOI.

What is needed is some way to make the input to the filter stationary so

that it may better track the optimum solution. One way to do this when filtering

samples from a digitally modulated signal is to implement the filter by using multiple

TIAFs arranged in parallel, and commutating the output from each of the TIAFs.

Then, each TIAF has its own optimum solution, or 'bowl', and the filter can acheive

significantly reduced overall MSE (1:681). The selection of the proper TIAF is an

explicit function of time, and hence, an adaptive filter so constructed is called a 'time

dependent adaptive filter' (TDAF).

1.2 Problem Statement

This thesis presents a TDAF which can be used to improve the signal to in-
terference ratio (SIR) and signal to noise ratio (SNR) of digitally modulated com-

munications signals. The performance improvement of the TDAF over the TIAF

is determined based on the application of various metrics, including Mean Square

Error (MSE) and Bit Error Rate (BER).

1.3 Scope

The intent of this thesis is to produce a computer simulation of a simple digital

communications system that can be used to evaluate the performance of a TDAF

under realistic conditions. A binary phase shift keyed (BPSK) signal-is used as both

the SOI and the SNOI. Comparisons of performance are made between the TDAF

and the TIAF for varying SNR, SIR, interference carrier frequency, and interference

data rate.
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1.4 Approach

The approach used to complete this research is divided into three-phases. The

first phase has two parts. The first part is basic research into adaptive filters and

cyclostationary signals. The second part is the development of the framework for

the computer simulation of the communication system. The second phase is the

development of the TDAF itself, and its insertion into the simulation. The last

phase is the characterization of the TDAP. Measurement of the TDAFs ability to

accurately recover the signal is made by running simulations for various interference

characterizations.

1.5 Organization

Chapter II provides a discussion of the fundamental concepts of adaptive filters

and cyclostationarity. Chapter III contains details on the construction of the TDAF

simulation. Chapter IV presents the results and analysis of data generated by: the

environment. The fifth and final chapter contains specific conclusions along with

recommendations for future research.
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II. Background

2.1 Introduction

In order to understand how Time Dependent Adaptive Filters (TDAF) im-

prove the Signal to Noise Ratio (SNR) and Signal to Interference Ratio (SIR) of

digitally modulated bandpass signals, there are several concepts that need to be un-

derstood. Among these are the concepts of cyclostationarity and adaptive filtering.

In presenting the idea of cyclostationarity, this chapter will provide the definition

of cyclostationarity, and give an example of a cyclostationary signal. Next, a brief

introduction to adaptive filtering will be presented. The Adaptive Lineai Combinei

(ALC) which is a, type of Time Independent Adaptive Filter (TIAF) will be pre-

sented. The TIAF is presented first because the TDAF can be implemented by com-

bining multiple TIAFs in parallel. Finally, the concept of Time Dependent Adaptive

Filtering will be briefly introduced. A thorough description of the implementation

of the TDAF is reserved for Chapter III.

2.2 Cyclostationary Signals

A process is cyclostationary if it has a periodic components in its autocorre-

lation function (2:20). The Fourier series expansion of a periodic (with period To)

function x(t) is

x(t)= , O,1e 2v t  (2.1)
n= -o0

where
1,
TO

where the coefficient at any given frequency is

1 r°

c = X(t)&- 2 -"dt (2.2)
TOJTo

= (x(t)e' 2 rn t) (2.3)

Recall that the power spectral density (PSD) of any function is the Fourier transform

of its autocorrelation. Therefore, if it can be shown that the PSD of a function

exhibits delta, functions, then the function is cyclostationary.
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For ergodic functions, the classical autocorrelation function is given by

R.(,r) = (x(t)x(t + r)) (2.4)

where

x(t) = -the function of interest

7 = the lag value

Notice that it is mathematically equivalent to write Eq 2.4 as

Rx(7-) = (x(t + r/2)x(t - r/2)) (2.5)

even though Eq 2.5 is not physically realizable (because of its noncausal nature).

The cyclic correlation function is a straightforward extension of this definition

(2:19)

Rx(-) = (x(t)x(t + T)e-s 2ir) (2.6)

where

x(t) = the function of interest

7 = the lag value

a = the cycle frequency

There are two equivalent interpretations of Eq 2.6. First, the cyclic autocorrelation

function is the standard autocorrelation but with a time and frequency shifted ver-

sion of itself. Referring to Eq 2.2, it can be seen that a second interpretation is that

the cyclic autocorreltion is the Fourier coefficient of the standard autocorrelation

at. a given cycle frequency, a (2:17- 20). Notice that when a = 0. Eq 2.6 reduces to

the standard autocorrelation function (2:20).

Wide Sense Stationary (WSS) random processes can be either cyclostationary

or purely stationary, but not both. Purely stationary processes are those for which

no a 5 0 can be found to satisfy ]?,(r) 0 0 except perhaps for the degenerate case

where r = 0 (2:20).
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If Eq 2.6 is re-expressed in the form of Eq 2:5, and e-j" t" is- factored into

e- j re ( Wt+/2) and e- ' 
c(t

-
T/

2), then a third interpretation becomes apparent. The cyclic

autocorrelation function can be written as a conventional -crosscorrelation (2:19)

Rx(7-) = ([x(t + 7-/2)e,-jr(t+/2) I[x(t -/2)e-j'rQ'-T/2)

= (u(t + r/2)v(t - r12)) (2.7)

= R,,(.) (2.8)

where

1u(i) = x(t)e -

v(t) = X(t)e~ j ' °a

Assuming that at least one of u(i) or v(t) is a zero mean process, the conven-

tiona.1 cross-correlation coefficient is (8:124)

,,(Tr) - . r,,() (2.9)

A normalization factor for the cyclic autocorrelation follows from Eq 2.9 and is called

the temporal correlation coefficient (2:20)

tx R (r)R.(o (2.10)

The following example was taken from (2) and is summarized here to show

how to calculate a cyclic autocorrelation.

Given a real randomn purely stationary signal with zero mean, a(t) we can write

(a(t)) = 0 (2.11)

We require that the autocorrelation of a(t) be nonzero:

(at + r/2)a(t- r/2)) 0 (2.12)
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Since we defined a(t) to be purely station-tr) (rather than cyclostationary), we know that

(a(t + r/2)a(t - T/2)e-J2 ,)= 0 for all a # 0 (2.13)

Eq 2.13 guarantees that

(a(t)e-j 2r t) 0 for all a 0 0 (2.14)

Now consider the anplitude-modulated sinewave

x(t) = a(t) cos(27fot + 9) (2.15)

1 -a()[ej(2;rf-t 0 ) + e-i( 2 -.Jo t+O)j (2.16)
2

Multiplying a(t) by co,(2irfot + 0) simply shifts the spectrum of a(I) to ±fo (and reduces

its magnitude). Therefore, since Eq 2.14 guarantees that a(t) contains no finite-strength

additive sinusoidal components, it is clear that x(t) contains no finite-strength additive

sinusoidal components either. In other words, there are not delta functions in its power

spectral density function. If we apply the non-linear transformation that is iside the time

averaging operator of Eq 2.5 to x(t) we get

y,(t.) = x + r/2)x(t -T/2)

= a(t + 7/2)a(. - T/2)-[ed"Jor C

+ (4 xfof +20) + e-j( ' fot+20)] (2.17)

Next. we apply the definition of the cyclic autocorrelation function to y,(1):

+=a eij27(a(t + r/2)a(t - r/2)c' -j2 ; 
)

4

+ 1eij2foT (a(t + 7/2)a(t - -/)-2..

+-C Iee(a(t + 7-/2)a(t - -/) j;(.2o(

+ 1 e-j2(a(t + r/2)a(t - /2)e - 2( c v+ fo)t) (2.1S)
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Eq 2.13 guarantees that the first two terms of Eq 2.18 are zero. The last two terms of

Eq 2.18 can only be nonzero if the exponent inside the time averaging operator -is zero.

Clearly, that happens when a = ±2f - 0. Substituting a = ±2f - 0 into Eq 2.18, and

noting that R,(r) = (a(t + r/2)a(t - r/2)) we have the cyclic autocorrelation function

function for x(t):

[je-j 20Ra(-r) for a = =2fo

R?(r)= 'Ra(T) cos(2lrfOT), for a = 0 (2.19)

0, otherwise

Referting to Eq 2.7, the correlation of the frequeitcy shifted versions of x(l) represented

by u(t) and v(t) should not be surprising. After all, x(t) was formed by frequency shifting

a(t) by fo, and the two spectral images of x(t) are s-'parated by 2fo.

2.3 Adaptive Filtering

2.3.1 Some Preliminaries. Given a real \N SS random process X(t), we know

that the autocorrelation of X(t) can be written as (8:143)

Ryx(r) = E{X(t)X(t + 7)} (2.20)

where

E{.} = the statistical expectati(, atr

7 = the lag value

If we assume X(t) is an ergodic process, then we can restrict our attention to a single

member function of X(t), x(t) (8'178). Furthermore, we can sample x(t) starting

at some arbitrary point k so that we are !eft with a discrete sequence x[k]. For N

2-5



samples, this sequence can be reprcsnted as a column vector Xk

X; = (2.21)

forming an N element array. Now the yah.: c the a.itocorrelation at a specific lag

va!-ie can be calculated as (11)

N-i
O.,[n] = Z x[kzf k + 77.) (2.22)

k=O

or equivalently in vector notation

1 XT

.[n] = 1-kXk+,, (2.23)

where

n = the lag value

N = the number of samples if Jue data vector

k = the seqence number or vector element number

and the superscript 7' reprcsents the ve:.tor transpose.

We can now define the autocorrelation matrix of a sampled sequence

R = 0 -[0 + 1 (2.24)

2-6



Now let us assute that we are designing a digital finite :rnpulse response (FIR)

filter. Given the input data vector Xk, we decide we want the filter output to be the

sequence d[k], called the desired response. Then we can define-a n vector P, the

cross correlation between the desired response and the-input vecLor (10:20)

d[k]Xk

d[k]XkIP = E{d'ox} ' (2.25)

d~k]Xk.4A'T1)

It is now possible to apply th" Wiener-Hopf equation to obtain the optimurn

weight vector (cailed the Wiener weight vector) (10:22)

W*= R-P (2.26)

The output of an FIR Jigital filter Yk is just the convolution of the input with the

filter weights. This can be expressd in sampled sequence notation (5:*i)

N-l

y[k] Z win j[k - n1 (2.27)
7=0

or equivalently in matrix notation (10:17)

S= Tx (2.28)

Unfortunatel.N, neither R nor P will in general be known. In an actual com-

munication system..1k] will -be given by

.[ki = d[k] + 4[4j + , [z] (2.29)

2-7



where

d[k] = tthe signal of interest

i[k] = some interfering signal

n[k] = noi&-

Substituting into Eq 2.22

1 N-1
q=[fn] = . {d[k] + ifk] + 7[k]f}{df[k - n + i[k - n] + n[k - j) (2.30)

'Ak=O

In the case of d[k], a special seqc-eice r-, ,- be transmitted and anticipated by the

receivei,anld thereby be known a I..'iori at the receiver (7:102), but i[k] and n[k] in

any practical system are not known. Therefore it is not possible to directly calculate

W1.

2 .3.2 The Least Mean Squared (LMS.) Algorithm. If the input to the filter is

stationary, and W is allowed to vary according to some rule which tends to mini-

mize the difference between the actual filter response and tile desired response, then

W becomes an arbitrarily close approximation of MW' (11). The equation for the

difference between dfk] and the filter response ydk] is simply

4[k] = d[k] - y[/,] (2.31)

Note that the power in [k] is the Mean Squared Error (MSE) and is given by

= E{e 2 [k]} (2.32)

It can be shown (10:19,20) that is a quadratic function of the filter tap

weights, the desired res )onse, and the filter input. is referred to as the performance

surface, and for a two tap filter, it is a parabloid (a. h: perparabloid if there are more
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Figure 2.1. A quadratic mean squared error surface. The verticle axis is and the
horizontal axes are the filter weights

than 2 weights) and resembles a bowl (see Figure 2.1). The bottom of the bowl is

the minimum MSE and when the bowl is projected onto the weight-vector plane,
the minimum describes the point in weight space described by W (10:21).

Given that d[k] is known, it is possible to search the error surface for its mini-

inume, thereby arriving at the optimum weight vector W". The most straightforward

method of searching the error surface is the LMS algorithm (7:101). Other algorithms

exist an(c are presented in (10:Chap 8).

A complete derivation of the LMS algorithm is given in AdaptivC Signal Pro-

cessing by Widrow and Stearns (10:99-101); only the result is given here:

Wk+J = Wk + 2IlCkXk (2.33)
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where

ji = the adaptation coefficient

In words, the weight vector for the next input vector is the sum of the current weight

vector and a scaled product of the error and the current input vector.

Eqs 2.27, 2.31, and 2.33 define an adaptive filter incorporating the LMS algo-

rithm. The two important assumptions here are first, that an acceptable estimate of

the desired signal (k is available, and second that Xk is a stationary process. Should

Xk fail to be a stationary process, then the bottom of the bowl defined by the the

surface will exist at different points in weight space. The statistics of Xk must

be non-varying or vary slowly, so that W will in general approach a near optimum

solution (11).

Extending the bowl analogy, searching for its minimum is equivalent to rolling

a marble down the side of the bowl. The steepness of the sides of the bowl is

determined by the power in d[k] relative to the power in n[k] and i[k] (11). The

more power in d[k], the steeper the sides of the bowl; hence, the more rapid thc

convergence.

With adaptive filters, given an error surface , there is a trade-off between rapid

convergence and close approximation of W'. The trade-off involves selection of an

appropriate adaptation coefficient, p. The smaller it, the more closely W approaches

W" (assuming stationarity of the input). For faster adaptation, /t is chosen to be

larger, but the MSE also increases. A good rule of thumb is to select. pi such that

(10:103,111- 114)
M

'(N + 1)(Power in Xk) (2.34)

where Af is the misadjusimeni of the filt-r. The misadjustment is a measure of the

average distance between W and W* that the filter designer is willing to live with.

Smaller M results in close approximation of W, but slower adaptation. Eq 2.34
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also assures convergence of the filter for 0 < M < 1. Unlike nonadaptive FIRs, the

adaptive transversal filter can fail to converge (10:102).

2.3.3 Time Dependent Adaptive Filtening. Digitally modulated signals are

not stationary, but rather cyclostationary (4:1). As a result, there does iot exist a

single value of W" associated with an single error surface C. Instead, there exist (for

a sampled signal) a finite number of error surfaces (1:679, 680). A TDAF simply

provides a separate TIAF for each error surface , in weight space. This can result in

a significant reduction in the MSE of the filter output (7:3). Each TIAF in the TDAF

has an independently adapted weight vector, Wkj. The TDAF LMS algorithm is

(1 :681)

Y, = XkW j ,k (2.35)

and

SWj,k + 2 1iEkXk Ck due to j (2.36)
Wjj otherwise

For error surface .. the weight vector Vk..., is convolved with the input and

is subsequently updated according to the LMS algorithm. The other weight vectors

WkitC~ are dormant. Hence. the overall time to adaptation for the TDAF is slower

than for the TIAF since each weight vector is updated only periodically, rather than

at each sample time k as in the case of the TIAF. The specific implementation of

the TDAF will be covered in detail in Chapter III.

2.4 Chaplcr Summary

This chapter provided an overview of the concepts of cyclostationarity and

adaptive filtering. A mnathematical means by which to determine if a signal is cy-

clostationary was provided, and an example of the calculation was presented. Time

Independent Adaptive Filtering was covered to form a foundation for the introduc-

tion of the concept of Time Dependent Adaptive Filtering.
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III. Simulation Implementation and Verification

3..1 Introduction

This chapter provides a detailed description of the methodology employed to

characterize the performance of the Time Dependent Adaptive Filter designed in

support of this research effort. Included is a description of the computer program

that was designed and written to facilitate the characterization.

3.2 Top Level Description of the Simulation

The simulation is a computer program that. was written in the C programming

language, and compliled on the public-domain GNU C compiler. Pains were taken

to adhere to the ANSI standard that was recently established for the C language.

As a result, the code should compile and run on any system that has an ANSI C

compiler and sufficient memory resources, including an IBM AT class compatible

computer. In fact. much of the code was developed on a PC compatible computer

with an 80386 microprocessor and 803S7 floating poilit coprocessor using Borland

C++ in ANSI mode.

The program simulates a simple communication system. Included in the system

are a data source. bandlimiting filters, a modulator. a noisy channel, adaptive filters

and a demodulator (See Figure 3.1). The SOI channel and SNOI channel shown in

Figure 3.1 are identical. The data rate for the SNOI channel can be set to some

percentage of the SOI data rate.

In the simulation, the symbol rate of the sign,. of interest (SOI) channel is

1 symbol/second. All other times, rater, and frequencies are based on that value.

While an actual practical communication system is unlikely to use such a data rate.

it is a simple matter to scale that rate to the appropriate level. This normalization to
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Figure 3.1. Signal flow through the simulation
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the SOI data rate simplifies the design of the simulation and analysis of the resulting

data.

There is a fundamental "unit of simulation time" referred to ,as an epoch. An

epoch always is comprised of an integer number of symbols. The duration of the

simulation is determined by specifying the number of symbols per epoch and the

number of epochs in the simulation.

Every reasonable attempt has been made to modularize the software to fa-

cilitate modification of the simulation. Each component of the simulation (filters,

modulators, etc.) accepts a single value for the input and provides back to the pro-

gram a single value as output. Hence, it is straightforward to substitute a different

filter or modulator for the one provided.

3.2.1 BER Version and LC Vlersion There are two distinct versions of the

simulation which differ in the data that they produce, but not in the filtering of the

composite channel signal. The first version allows the filters to adapt for a specified

number of epochs, and then freezes the weights and continues to run, keeping track

of the number of bit errors for the TDAF channel and for the TIAF channel. This

is referred to as the BER (Bit Error Rate) Version.

The second version allows the filters to adapt continuously while storing the

resulting squared error. After a full epoch, the filter weights are reinitialized and

again allowed to adapt. The resulting MSE. averaged with that of the previous

epoch. The process is repeated a specified number of epochs (selectable at run time)

providing an estimate of the expected value of the MSE as a function of adaptation

time. This is called the LC (Learning Curve) Version.

3.2.2 Input, Output, Notation, and Definitions. Depending on the version

being run, the simulation requires 24 input parameters at run time. The required

parameters can be ,ed in at the terminal, but, ease of use is significantly enhanced
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if the parameters are typed into a text file, and provided to the simulation using the

UNIX or DOS redirection operator. The parameters required for the _BER version

are listed in t\ppendix A along with a list of the data files produced. The same

information for the LC version is listed in Appendix B.

The MSE returned by the BER version of the program is different -from the

MSE returned by the LC version. The BER version of the program freezes the filter

weights, and then starts to collect squared error data. That data is then averaged

and returned by the program as the MSE. The LC version allows the filter weights

to continuously adapt, and averages squared error sample by sample for all epochs

yielding a vector of MSE .ts a function of sample number. The MSE error for the

last P symbols of the learning curve is averaged, and that number is returned by

the program as the MSE. As a result, for equal inputs and initialization, the MSE

returned by the LC version of the program will always be smaller than that returned

by the BER version.

All points in the signal path of the simulation are necessarily discrete samples.

In an actual system, many of these signal would be continuous time. In this chapter,

continuous time signals are represented as functions of time: x(t), d(t), etc. Discrete

time signals are represented as functions of sample number: x[k] or xk, d(k] or dk

etc. Here is a list of most of the signals used in the simulation:

" bso1 (t), bsvoi(t): baseband data signal (1 or 0).

" Ms l(i), rnsNol(t): formatted baseband data signal (bi-polar or bi-phase).

m fs 0 1 (t), misAro!(t): bandlimited baseband data signal.

" dsoi(t), dsivot(t): modulated signal.

* n(t): Additive white gaussian noise.

* X(t): sum of dso1 (t), dsNoI(t) and ?i(t).
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* YTDAF(t), YTIAF(t): adaptively filtered bandpass signal.

* yDAF(t), YTIAF(t): demodulated signal.

* ?mhTDAF(t), i7iTIAP(t): recovered signal.

* ETDAF(t), ETIAY(t): difference signal, d(t) - y(t)

3.3 Simulation Details

The simulation has two time bases: one for the SOI and another for the SNOI.

The simulation operates by calculating the signal value at each point in the signal

path and then incrementing time by 1/(sample frequency). The signal value is then

recalculated. This process is repeated until the required number of data symbols

have been processed.

3.3.1 Data Generator. The data generator (DG) used in this-simulation pro-

duces a pseudorandom sequence-of l's and O's sampled at the appropriate frequency.

Incorporated in the DC is a routine taken directly from Numerical Recipes in C

(6:226, 22S) called irbit2 which actually calculates the value of each data bit. When-

ever i, full bit timc has elapsed, the DG calls irbit2, requesting a new bit value, either

1 or 0, for the random sequence. The DG continues to output that value for the

next. full bit time.

The routine irbil2 icquires a primitive polynomial modulo 2, referred to here

as the seed, to form the random bits. The polynomial used was

x +.,,- + x +.x I + x. (3.1)

In C, the above polynomial is represented as the bit sequence

{1000000000000i00111} (3.2)
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and generates a random sequence with a period of repetition of 28 - 1 = 262143 bits.

The longest simulation run was 512 epochs x 16 symbols per epoch = 8192- symbols.

Hence, as far as the simulation was concerned, the data sequence was purely random.

A call to the DG routine requires six input parameters:

" time: The current value of the base clock for the signal path under considera-

tion (either SOI or SNOI).

" datarate: This is constrained to be 1 for the SOI. For the SNOI, it is calcu-

lated by the simulation as 1/SNOI symbol frequency where the SNOI symbol

frequency is an input parameter to the program.

* lastdata: The value of the last sample returned by DG. This variable is modified

by the routine.

* lasttime: The time when the current bit started.

" iseed: The current value of the seed required by irbit2. This variable is modified

by the routine.

* outputflag: A flag which forces the DG to return a square wave rather than

random data when it is set.

3.3.2 Finite Impulse Response Low Pass Filters. FIR filters are used for the

required low pass filters (LPF) because the filter cocfficients can be quickly and

easily calculated so that it is possible to select the cutoff frequency of the filter

at run time. The FII filter coefficients are calculated using the windowed Fourier

Transform method with the Hamming window(5:444-452):

_ sin[w,(k - N/2)] (3.3)
(k -N/2)

Zuk = {0.54 - 0.46 cos(2rk/N), 0 < k < Nr (3.4)
, otherwise
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where

w, = the discrete cutoff frequency (0 < w, < ir)

N = the number of taps in the FIR filter

The output of the filtering routine is the convolution of the filter coefficents given

by Eq (3.3) and the past N input values:

N-i

m'[k] = E hn]rn[k - n] (3.5)
n=O

The filters are used for two purposes at two different points. First, to band

limit the baseband message signal (either SOI or SNOI) at the input to the channel,

and second, to reject the double frequency component of the demodulated signal at

the output of the mixer in the demodulator (see Section 3.3.4).

A call to the LPF routine requires five input parameters:

* input: The value of the signal to be filtered.

* nitmdelays: One less than the number of filter coefficients.

" weights: A vector containing the values of the filter coefficients.

" contents: A vector containing the past numdelays samples of the input.

" gain: The output of the filter is simply multiplied by this number.

.3.3.3 Data Formatter The data formatter (DF) simply converts the binary

digits of the data generator into a bi-polar signal. When its input is a 1, the formalter

does nothing. When its input is a 0, the formatter returns -1. The formatter is also

capable of formatting the output into a Manchester code. However, no data was

taken with the formatter running in this mode.
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3.3.4 Modulator and Demodulator BPSK modulators have several advan-

tages that lend themselves to use in a simulation such as this. First, they are simple

to code. Second, they are in common use. Finally, the demodulated signal, once low

pass filtered, is restored to the shape of the baseband signal. As a result, a BPSK

modulator was chosen for this simulation.

The equation that describes the modulation process is (9:130)

s(t) = Am'(t) cos(2-r ft) (3.6)

where

A = carrier amplitude

f, = carrier frequency

m'(t) = the formatted message

Note that if m'(t) = ±1, the power in the modulated signal is (9:16)

P = A(3.7)
2

A call to the modulator routine requires four input parameters:

* input: The value of the baseband signal.

9 carrierfreq: The carrier frequency, f,.

9 carrierampl: The carrier amplitude, A.

* time: The current value of the base clock for the signal path undei considera-

tion.
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The demodulator simply restores the bandpass signal to baseband. The equa-

tion that describes its operation is

(t) = y(t) cos(2-r f~t + 6) (3.8)

The output of the demodulator is fed to a low pass filter to reject the dotible frequency

component that results from Eq 3.8.

A call to the demodulator routine requires four input parameters:

* input: The value of the bandpass signal.

" carriefireq: The carrier frequency, f.

" phase: A correction factor provided in the event that there is a significant

phase shift through the channel.

• time: The current value of the base clock for the signal path under considera-

tion.

3.3.5 Noise Generator The signal n(t) is provided by a routine called gasdev

taken from Numerical Recipes in C (6:210. 211, 217). The routine gasdev returns

normally (Gaussian) distributed random samples with zero mean and unit variance.

The simulation multiplies the returned sample bx a gain factor in oilder achieve noise

power other than 0 dOW. As an example, assume the desired level of noise power is

-15 dB11W. Converting to absolute power levels

- 15 dBW = 10-1/'o = 0.03162 watts (3.9)

A normally distributed random process X with mean /t and variance a"2 can be

converted into a normal random process Z with zero mean and unit variance by

applying

z = -- (310)
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Therefore, Z can be converted into X by applying

X = oZ+ i (3.11)

Since a2 is the ac power in the process (we want to maintain zero mean, hence zero

dc), multiplying Z by the square root of the desired power yields the appropriate

random process. So in the example,

c2 = 0.03162

o" = 0.17783

Providing the simulation with a noise gain of 0.177'-'3 at run time results in -15 dBW

of noise power being added to the SOJ and SNOT.

The only input parameter gasdev requires from the simulation is a seed for

the random number generator. Any negative integer on the interval (-65536, -1] is

acceptable.

3.3.6 Time Independent Adaptive Filter (TIAPF) The TIAF is adapted from

Chapter 6 of \Vidrow and Stearns Adaptive Signal Processing (10). The transver-

sal adaptive linear combiner (ALC) has the advantage that it is easy to code and

the single input, single output characteristic of the filter is perfectly suited to this

simulation, A block diagram of a transversal adaptive linear combiner is shown in

Figure 3.2. Note the presence of a bias weight in Figure 3.2. This allows for more

rapid convergence of the filter when some dc or very low frequency component is

present in the signal being filtered (1:679).

The TIAF routine operates on two vectors which are passed in to the routine

each time it is called. The first is the vector Wk containing the filter coefficients.

The second is the input vector Xk that contains the past N inputs to the filter,

where N is the number of filter coefficients.

3-10



nputA ...

bias

I z
output

desired _

o error

Figure 3.2. An Adaptive Linear-Combiner

The TIAF is initialized by calling a routine that sets Wk = Xk = 0. In the

J3.R version of the simulation, the TIAF is initialized only once. In the LC version,

.ne TIAF is re-initialized after e,,,,.y P symbols, where P is the number of symbols

in one epoch.

A call to the TIAF rout,. te requires eight inpu parameters:

* input: The signal being filtered.

* desired: The training signal.

• mu: The adaptation coefficient.

* numaps: The number of filter coefficients.

• error: The value of dk - Yk. Recall that dk is the desired signal and yk is the

value returned by the routine. This variable is modified by the routine.

• weights: The vector Wk representing the filter weights. This vector is modified

by the routine.
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, contents: The vector Xk representing the past inputs to the filter. This vector

is modified by the routine.

o bias: The value of the bias filter weight. This variable is modified by the

routine.

When the TIAF routine is called, the process illustrated in Figure 3.3 is per-

formed.

3.7 Time Dependent Adaptive Filter (TDAF) The signal m'(t) defined in-

Section 3.2.2 meets the criteria for a(t) defined by Eqs 2.11, 2.12 and 2.13 inSec-

tion 2.2. Therefore the output of the modulator ofSection 3.3.4, y(t), is a cyclosta-

tionary signal with cycle frequencies ±2f,.

The TDAF is made up of a number of TIAFs with a common input. The

output from the TDAF is commutated from the output of the TIAFs as shown in

Figure 3.4. The number of TIAFs used is equal to the number of samples taken per

symbol uf the SO. Hence, a priori knowledge of the sampling rate and symbol rate of

the SOI is required to implement this filter. Note that the memory requirements for

the TDAF are larger than that for the TIAF, because of the multiple weight vectors

required. The processing time is approximately the same for both filters however,

since each call to either routine involves only a single convolution.

To show how a TDAF stationarizes a cyclostationary signal, consider the time

domain signal consisting of a periodic pulse train with period 76 and sampling fre-

quency l//'. (see Figure 3.5):

L-I

x(t)= Z 6(t - n~o) (3.12)
n--L

Let
(T ((+ / )r = kTo; k =0, ±1, ±2,.

y(l, r) = a:(t)x(i. + r) "(3.13)
0 -otherwise
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{Initialize variable that will hold output value...

sum = 0.0;

{An N element vcctor ranges from xo to X(NI)...
{Shift the input vector xk to the right and multiply input by
filter weights while summing the product... }

for count = (N - 1) to 1 do
begin

Xcoun t, = XCOt_ 1

SlITI = sum + X Count * Iv COUII;
end;

{now take care of the current input

Xo = input;
sum = sum + X0 * Wo;

{now take care of the bias input

sum = sum + 1 * Wbias:

{The current value of sum will be returned to the program as the
output...
{ but the error must still lbe calculated }

error = desired - sum;

{Apply the LMS algorithm to the filter weights...

for count = 0 to N - I do
begin

t'col'OIi, = iocoullt + 2 *j * error * Xcouilt;
end;

return sum;

Figure 3.3. Pseudocode for the TIAF algorithm
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Figure 3.4. A TDAF implemented as a p~arallel bank of TIANs
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4--To -+

4-Ts

, I

Figure :3.5. The impulse train described by Eq 3.12 sampled every T,

From Eq 2.6 we have

R, = ((-t) )e- -° ) (3.14)

= lim y(l. 7)e' 2 ,dt (3.1-5)

To- J Ao I cos(27at) - jsin(2;aI)'dl (3.16)

,-IT- (L. -r) cos(2zol) (It - jy(, -, ) sin(271. at) d (3.17)

Recall (Sction 2.2) that a signal is cyclostationary if RZ'(*') L 0 for some-a - 0.

Substituting Eq 3.12 into Eq 3.17 and picking a 1/7o, after interchanging tie
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order of summation and integration, we have

L- 1
= n:_L TO.

j-0 L j o6(t -nTo) sin(27#-)d (3.18)
0 =-L 0T

L-11,1

= ,__, (cos(2r -nTo) - j sin(2ir onTo) (3.19)

= 2L/To (3.20)

which is clearly not equal to zero. Therefore Eq 3.12 defines a cyclostationary signal.

Now consider that x(t) is applied to the filter of Figure 3.4. In the first TIAF

of the balr" the pulse occurs at the first delay element; in the second TIAF, the

pulse occurs at the second delay element, and so on. After a full period of the signal,

the next pulse in the train will be applied to the filter, where it will occur at the first

delay element of the first TIAF. See Figure 3.3.7. Thus, at the time that any given

TIAF in the TDAF is updated, the pulse'will always be in the same bin. Therefore,

from the perspective of the Nth TIAF, the signal can be written as the nonperiodic

function

XTAF(t) = 6(1 - N) (3.21)

The autocorrelation of XTAF(t) exists o71y fol r = 0. Therefore, except for the

degenerate case of r = 0 the cyclic autocorrelation is zero. Hence, the TIAF sees a

purely stationary signal.

A call to the TDAF routine requires nine input parameters:

* input: The signal being filtered.

* desired: The training signal.

* mu: The adaptation coefficient.
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Figure 3.6. Stationarization of a periodic pulse train by a. TDAF
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* sampersym: The number of samples per symbol of rn'(t) (also the number of

TIAFs in the TDAF).

* nurnaps: The number of filter coefficients in each TIAF.

* tdafwts: The two dimensional array W,,k representing the filter weights. This

array is modified by the routine.

e contents: The vector Xk representing the past inputs to the filter. This vector

is modified by the routine.

* error: The array containing the values of dk -Yk. Each TIAF has an associated

error, hence, the error must be stored in an array. This array is modified by

the routine.

o bias: The array containing the values of the bias filter weights. Each TIAF

has an associated bias weight. This variable is modified by the routine.

Whenever the TDAF routine is called, the process illustrated in Figure 3.7 is

performed. Note the similarity to Figure 3.3.

3.4 Code Verification

When properly coded, the adaptive filters in this simulation converge to a zero

mean squared solution if there is no interference or noise in the input signal (i.e.

when x(t) = d(t)) (11). Figure 3.8 shows the converged response of the filters under

those circumstances.

The small amount of ripple visible in the response of the TDAF is due to its

slow convergence. This was verified by decreasing the adaptation time and noting

increased ripple. Each input of the TIAF gives rise to an adjustment of the filter

weights. For the TDAF, however, the individual TIAFs comprising the filters are

adjusted only once per symbol. Therefore, the TDAF converges much more slowly.
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{Initialize variable that will hold output value...

sum = 0.0;

{If this is the nth call to the routine, then the TIAF that is active is...

tiafnum = (n mod sampersym) + 1;

{Increment n for the next call to the routine

n = n + 1;

{Shift the input vector xk to the right and multiply input by
filter weights while summing the product...

for couhit = (N - 1) to 1 do
begin

Xcount = Xcount_ 1;
sum = sum + X count * w count, tiafnum;

end;

{now take care of the current input

xo = input;
sum = sum + X0 * W0, tiafnmm;

{now take care of the bias input

sum = sum + 1 * Wbias ' tiafrnuim;

{iThe current value of sum will be returned to the program as the
output, but the error must still be calculated...

error tiafium = desired - sum;

{...anM the filter weights must, be updated...

for count = 0 to N - 1 do
begin

Wcount, tiafnum = Wcount, tiafnum + 2 * j* error tiafnum * Xcount;
end;

return sum;

Figure 3.7. Pseudocode for the TDAF algorithm
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3.5 Chapter Summary

This chapter provided a detailed description of the simulation developed to

compare the performance of a Time Dependent Adaptive Filter with that of a Time

Independent Adaptive Filter. In the simulation, both the TDAF and TIAF simul-

taneously filter the channel signal. The simulation calculates the resultant Mean

Squared Error for both filters. another version of the simulation also counts the

number of bit errors at the receiver end.
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IV. Results

. Introduction

In this chapter, the results obtained from a number of simulation runs are

presented. Each simulation run varied one or more of the following parameters:

" Signal to Noise Ratio (SNR) at the filter input

" Signal to Interference Ratio (SIR) at the filter input

" Baud rate of interferer

" Carrier frequency of the interferer

The improvement factor for the TDAF is defined as (7:51)

= MSETIAF (4.1)
MSETDAF

The improvement factor will be used as the primary figure of merit for the TDAF.

A comparison of Bit Error Rate (BER) is also made, but it is emphasized that

the results presented are only very rough estimates of the actual BEII because only

relatively short (8192 symbols) simulations were run. Longer simulation runs were

possible, but with a sample frequency of 64 samples pem symbol, the run time involved

would have reduced the number of runs that could be made. Furthermore, computer

disk space was extremely scarce, and the fact that longei runs result in longer data

files contributed to the decision to limit the length of each simulation run.

4.2 Simulation in a Noisy Environment

The first runs of the simulations were made with with the carrier amplitude

of the interfering signal set to zero. The amplitude of the SOI carrier and the noise

gain are shown in Table 4.1. The remaining input parameters were not changed from

one simulation to the next. Their values are shown in Tables 4.2 and 4.3.
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SNR Carrier Amplitude Noise Gain
-20 dB 0.140720 0.995037
-15 dB 0.247602 0.984554
-10 dB 0.426401 0.953463

-5 dB 0.693186 0.871635
0 IB 1.000000 0.707107
5 dB 1.232678 0.490156

10 dB 1.348400 0.301511
15 dB 1.392370 0.175081
20 dB 1.407195 0.095037

Table 4.1. SOT carrier amplitude and noise gain for noisy environment simulations

Input Value Parameter
6509731 random bit generator seed

-1018 AWGN seed
64 number of samples/symbol
1 Manchester or Bipolar format (1=Bi, 0=Man)
1 Pulse shaping (l=y, 0=n)

64 Num taps in FIRs
32 Num taps in TIAF
32 Num taps in each bank of TDAF
1.0 SOI pulse shaping LPF cutoff freq
1.0 SOI pulse shaping LPF gain

See Table 4.1 SOJ carrier amplitude
6.0 SOT carrier frequency
.95 SNOI baud rate

0.0 SNOI carrier amplitude
6.0 SNOI carrier frequency
1.0 output LPF gain
1.0 output LPF cutoff frequency
-0.0 demodulator phase shift

See Thblc '4.1 Noise gain
0.05 misadjustment

1 outputflag (1=random data, 0=square wa.ve)
16 Num symbols in one epoch

512 Num of epochs (does not include adaptation)
32 Number of adaptation epochs

Table 4.2. Input parameters for noisy environment simulations for the B1,R. version
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Input Value Parameter
6509731 random bit generator seed

-1018 AWGN seed
64 number of samples/symbol
1 Manchester or Bipolar format (l=Bi, O=Man)
1 Pulse shaping (l=y, 0=n)

64 Num taps in FIRs
32 Num taps in TIAF
32 Num taps in each bank of TDAF

1.0 SOI pulse shaping LPF cutoff freq
1.0 SOI pulse shaping LPF gain

See Table 4.1 SOI carrier amplita-le
6.0 SOI carrier frequency
.95 SNOI baud rate
0.0 SNOI carrier amplitude
6.0 SNOI carrier frequency
1.0 output LPF gain
1.0 output LPF cutoff frequency

0.0 demodulator phase shift
Sec Table 4.1 Noise gain

0.0.5 misadjustment
1 outputflag (1=random data, 0=squarc wave)

100 Num of epochs
16 Number of symbols to average

512 Number of symbols per epoch

Table -1.3. Input parameters for noisy environment simulations for the LC version
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Figure 4.1. Inprovement factor as a function of SNR

4.2.1 Improvement Factor. Figure 4.1 shows the improvement possible for

varying SNR. The data used was generated by the BER version of the program be-

cuasc that version freezes the filter weights after a specified adaptation time. The

data for Figure 4.1 was taken from Table 4.4. Reed shows in his PhD dissertation

(7:77) that the TDAF (when fully adapted - what he calls an optimal time de-

pendent adaptive filter) will always do at least as well as the TIAF (also when fully

adapted). Why, then, is the MSE smaller for the TIAF than for the TDAF at 20

d1B in Table 4.4? The key is that the TDAF could have adapted further if the sim-

ulation had not frozen its filt,.r weights. When the same simulation was re-run and

the adaptation time was doubled (friom 512 adaptation symbols to 1024 adapation

symbols), the MSE for the TDAF fell to 0.002970, and the iml)rovement factor rose

to 2.11212. Therefore, the shape of the curve in Figure 4.1 is dependent on the

amount time the filter is allowed to adapt.
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MSE
SNR TDAF TIAF J
-20 dB 0.535764 0.550010 1.02659
-15 dB 0.427564 0.484972 1.13427
-10 dB 0.272262 0.363822 1.33629-
-5 dB 0.141466 0.227957 1.61139
0 dB 0.064374 0.125292 1.94631
5 dB 0.027251 0.060045 2.20341
10 dB 0.012286 0.026911 2.19038
15 dB 0.007024 0.011781 1.67725
20 dB 0.005233 0.004538 0.86719

Table 4.4. MSE data for simulations in AWGN

The symmetry of Figure 4.1 is not unexpected. When the SNR is high, both

filters achieve a nearly optimum solution, resulting in an improvement factor near

unity. When the SNR is low, neither filter call "lock on" to the SOI; the MSE

for both filters is large, and again, the improvement factor drops to near unity.

When the SNR is in the moderate range, however, the TDAF's advantage due to

stationarization of the SOI comes into play as illustrated by the larger improvement

factor.

4.2.2 Comparison of Filtered Demodulated Signals. A comparison of the de-

modulated signals for various levels of SNR can be seen in Figures 4.2 through 4.6.

Note that the level of the output is reduced each time the SNR. is decreased. The

reason for that is simple. In order to keep the adaptation time the same for each

run, the total amount of power input to the two filters is normalized to 0 BW (see

Table 4.1). Recalling from Section 2.3.2 that thc adaptation coefficient.. It. depends

on the input power to the filter, maintaining an input power of 0 dBW to the filter

results in a constant value for It for all runs. Hence, the adaptation time is the same.

.2..3 Comparison of MSE Learning Ciurves. If the MSE for an adaptive filter

is plotted as a function of sample number, the result is the "learning curve" for the

filter (10:51). For the TIAF, the data for the learning curve is collected in the
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Figure '.6. The desired signal, TDAF response, and TIAF response for -20 dB SNR.

following manner. The filter is initialized and allowed to adapt; tile resulting error

for each sample is squared and stored in an array. Then the filter is reinitialized, and

again allowed to ddapt. The resulting error is squared, and added to the previous

error data. Aftei this process is repeated M times, where Af is some sufficieotly

large number (Al = 100 in this thesis), each element is divided by Al. The result is

an estimate of the MSE-. The larger Af. the better the estimate.

For the TDAF, the process is somewhat more complicated. Recalling from

Section 2.3.3 and 3.3.7 that the individual TIAFs comprising the TDAF are adapted

oly once per symbol, it does not make sense to plot the learning curve as a function

of absolute sample number. This is because no filter adaptation has occurred from

one sample to the next in the TDAF as is does in the TIAF. Instead. the adaptation

for the TDAF is from one ,Vmbol to the next. Therefore, for the TDAF. in addition to

averaging the squared error for each reinitialized run to the next as in tile TIAF, the

error for each sample comprising a given symbol is averaged. The resulting learning
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Figure 4.7. MSE learning curves for the TDAF and TIAF for 0 dB SNR.

curve plots the MSE as a function of symbol number, or (sample number)/(samples

per symbol).

Referring to Figures 4.7 through 4.11, note that the SNR is proportional to

the initial slope of the learning curve. This is because st;ong correlation between

the input signal and the desired signal yields an error surface with steep sides (see

Section 2.3.2). Steep error surface sides result in faster adaptation.

The learning curve plots have been normalized by the average power in the

desired signal. This was done so that comparisons of the rate of learning could be

made without regard to the magnitude of the MSE.

The purpose of the learning curve is to show the adaptation process of the

filters. The learning curve plots are not intended to provide an indication of the

vaue of the MSE; instead, refer to Table 4.4.
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SNR TDAF TIAF
0 dB 0.0 0.0
-5 1B 0.004029 0.008058
-10 dB 0.061653 0.070321
-15 d1B 0.198877 0.183372
-20 dB 0.535764 0.550010

Table 4.5. BER for five simulations in a noisy environment

4.2.4 Bit Error Rate An error detection occurs when the sum of samples

over a symbol time is less than zero when a 1 was transmitted, and greater than zero

when a -1 was transmitted. BER is calculated according to

BER = # of Bit Errors (4.2)# of Symbols in Simulation

Since a BPSK modulator was used, the number of symbols equals the number of bits.

In many instances, no errors vere detected during the course of the simulation. It is

not possible to overemphasize the point that the BER for that particular SNR is not

zero. The only conclusion that may be made is that for that particular simulation

run, no bit errors were made. With that in mind, refer to Table 4.5. Note that

the greatest reduction in BER occurs at -5 c113 SNR. These results seem to compare

favorably with those plotted in Figure 4.1. Each simulation was 8192 symbols in

duration.

4.2.5 Sununary T he data presented show that the TDAF in general provides

some improvement over the TIAF as long as the SNR is no worse than about -10 dB.

When the SNR is very high, both filters achiexe a. low MSE; hence, the improvenent

is not appreciable.

4.3 Simulation in Interference

In this section the performance of the TDAF is measured under the condition

that an interference signal of the same carrier frequency and similar baud rate is
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SIR SOI SNOI
-20 clB 0.140720 1.407195
-15 dB 0.247602 1.392370
-10 dB 0.426401 1.348400
-5 d1B 0.693186 1.232678
0 dB 1.000000 1.000000
5 d1B 1.232678 0.693186

10 dB 1.348400 0.426401
15 dB 1.392370 0.247602
20 dB 1.407195 0.140720

Table 4.6. SOI and SNOI carrier amplitude for interference environment
simulations

present in the channel. As in Section 4.2, the total power into the filter is maintained

at 1 watt. See Table 4.6 or the carrier amplitudes used.

Somewhat unrealisticly, the condition that no AWGN is present on the channel

was chosen in an attempt to identify the performance differences of the filters for noise

and interference. The ratio of interference baud rate to SOI baud rate was set at 0.95

for all simulations in this section. It was thought that such a. ratio would adequately

stress the filters without rendering either TDAF or TIAF useless. Surprisingly, the

adaptive filters are relatively insensitive to the baud rate of the interferer as can be

seen in Figures 4.24 and 4.25. Table 4.7 shows the input parameters used to obtain

the data for the simulations using the BER version of the program. Table 4.8 shows

the input parameters used for the LC version simulations.

4.3.1 Improvement Faclor. The improvement gain for the TDAF was im-

pressive when interference was present. Table 4.9 shows the results obtained from

the BER version of the simulation. The data shown has been plotted in Figure 4.12.

Note the similarity in shape to Figure 4.1 in Section 4.2.1. In Figure 4.12 however,

the magnitude of the improvement is significantly higher than in Figure 4.1. This is

an indication that the major advantage of the TDAF is in interference rejection.
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Input Value Parameter
6509731 random bit generator seed

-1018 AWGN seed
64 number of samples/symbol
I Manchester or Bipolar format (l=Bi, 0=Man)
1 Pulse shaping (l=y, 0=n)

64 Num taps in FIRs
32 Num taps in TIAF
32 Num taps in each bank of TDAF

1.0 SOI pulse shaping LPF cutoff freq
1.0 SOI pulse shaping LPF gain

See Table 4.6 SOI carrier amplitude
6.0 SOI carrier frequency
.95 SNOI baud rate

See Table 4.6 SNOI carrier amplitude
6.0 SNOi carrier frequency
1.0 output LPF gain
1.0 output LPF cutoff frequency
0.0 demodulator phase shift
0.0 Noise gain

0.05 misadjustment
I outputflag (1=random data, 0=square wave)

16 Num symbols in one epoch
512 Num of epochs (does not include adaptation)

32 Number of adaptation epochs

Ta1l)1e ,.7. Input parameteis for interference environment simulations for the BE R.
version
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Input Value Parameter
6509731 random bit generator seed

-1018 AWGN seed
64 number of samples/symbol
1 Manchester-or Bipolar format (1=Bi, 0=Man)
1 Pulse shaping (l=y, 0=n)

64 Num taps in FIRs
32 Nuin taps in TIAF
32 Num taps in each bank of TDAF

1.0 SO pulse shaping LPF cutoff freq
1.0 SOI pulse shaping LPF gain

See Table 4.6 SOI carrier amplitude
6.0 SOI carrier frequency
.95 SNOI baud rate

See Table 4.6 SNOI carrier amplitude
6.0 SNOI carrier frequency
1.0 output LPF gain
1.0 output LPF cutoff frequency
0.0 demodulator phase shift
0.0 Noise gain

0.05 -misadjustment
1 outputflag (1=random data, 0=square wave)

100 Num of epochs
16 Number of symbols to average

512 Number of symbols per epoch

Table 4.8. Input parametCrs for interference environment simulations for the LC
version

MSE
SNR TDAF TIAF J
-20 dB 0.455682 0.954006 2.09358
-15 dB 0.269755 0.870597 3.22736
-10 dB 0.096536 0.741551 7.68160
-5 dIB 0.039515 0.570294 14.43234
0 dB 0.019807 0.370759 18.71878
5 dB 0.011584 0.183849 15.87094
10 dB 0.008921 0.072100 8.08285
15 dB 0.009487 0.028873 3.04343
20 dB 0.007489 0.012307 1.64334

Table 4.9. MSE data for simulations in interference
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Figure 4.12. Improvement factor as a. function of SIR

4.3.2 Coniparison of Filter-ed Demodulated Signals. A comparison of the de-

mnodulated signals for various levels of SIR can be seen in Figures 4.13 through 4.17.

otthta h Igtsalethe response of the TIAF loses all similarity to the

desired signal. Foi the TDAF, on the other hand, the shape of the response is very

nearly correct even at, -20 d11 SIR%, although the level of its output is not. Figure 4.18

is a plot of the SNOI over the same time interval as Figfures 4.13 through 4.17. Note

the similarity of thieTIAF output in Figures 4.16 and 4.17 to the plot in Figure 4.18

> 10

indicating, that the T1AF could not track the SOI, and instead passed the SNOI.

4.3..3 Contparisoi oJ" &ISE Lea-rning Cin-ves. The learning curves shown in

Figures 4.19 through ,4.23 are coinputed in the same fashionl ,s those in Section 4.2.3.

Again, the adaptive ilters converge more rapidly when the SIR is high. In fact

Figures 4.22 and 4.23 show that there is little reduction in the level of the MSE

throughout the course of the simulation.
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SIR j TDAF ITIAF
0 d B { 0.0 10.220974
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-10 (lB I 0.0 0.449152
-15 dB 0.0 (0.46i7708

-20 dB J0.152240 (0.48101i6

Tabie 4.10. BER for five Simulations in Interference

4.3.4 Bit Error Rate Table 4.10 shows the BER observed during the sinmula-

tions in interference. These five simulations indicate that there may be a significant

improvement in BER when a TDAF is used to extract a signal from a strong inter-

ferer. Referring to Table ,t.5, note that in noise. both filters suffered approximately

5%error rate. hI interference, however, the BE3R for the TDAF dropped irom

approximately .50% to under 20%.

4].3.5 Sumnma.ry. The improvement obtained for simulations in an interfer-

ence were better overall than for those run in a noisy environment,. The improvement
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factor was higher at all levels of SIR, and the Bit Error Rate appeared to be lower.

The simulations show that the TDAF is very good at rejecting interference, even

when the interferer is at the same carrier frequency.

4.4 Iar yi.,: the Baud Rate of the Interferer

The data used to produce Figure 4.24 and 4.25 was compiled from 12 simula-

tions. A simulation was run for each the four relative baud rates at -10 dB, 0 dB and

10 dB SIR. The carrier amplitudes for those levels of SIR can be found in Table 4.6.

All remaining input parameters were the same as those listed in Table 4.7.

The data in this section support the surprising result that the TDAF is es-

sentially unaffected by the baud rate of the interferer. Figure 4.24 illustrates the

TDAF's ability to reject an SNOI even when its baud rate, modulation type and

carrier frequency are the same as the SOI. Figure 4.25 is included to show the TIAF's

performance under the same conditions. The TIAF was also fairly insensitive to the

baud of the interferer, but note that the MSE for the TIAF is approximately 10 dB

worse.

4.5 I/arying the Carrier Frequency of the SNOI

The data, for Figure 4.26 were compiled from five simulations. In each simula-

tion, the carrier frequency of the SNOI was varied as indicated. The SIR was fixed

at 0 dIB. The remaining input'l)arameters to the simulation were set according to

Table 4.7.

The TDAF is not affected by SNOI carrier frequency proximity as illustrated

by Figure 4.26. The TIAF however suffers a significant increase in MSE as the carrier

frequencies of the SOI and SNOI coincide.
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4.6 Chapter Summary

Over 50 simulations were run to obtain the data for this chapter. The results

of those simulations indicate that that for a given communications system, if a choice

exists between a TDAF and a TIAF, then the conditions under which the filter will

be operating must be considered prior to making -the selection. The simulations

yielded improvement factors that ranged from -0.6 dB to 12 dB. Even though there

was one case where the TIAF outperformed the TDAF, it was shown that given

sufficient adaptation time, the TDAF will always do at least as well as I-he TIAF.
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V. Conclusions and Recommendations

5.1 Conclusions

This thesis presented a TDAF which could be used to improve the signal

to interference ratio (SIR) and signal to noise ratio (SNR) of digitally modulated

communications signals. The performance improvement of the TDAF over the TIA7

was determined based on the application of various metrics, including Mean Square

Error (MSE) and Bit Error Rate (BER). The collected data indicate that there are

advantages and disadvantages of the TDAF. The advantages can be summarized as

follows:

" The improvement in MSE obtained by using a TDAF over a TIAF in a noisy

environment can be significant. With a 0 dB SNR, a. performance gain of

nearly 3 dB can be expected.

* The improvement in MSE obtained by using a. TDAF over a TIAF in situation

where there is a strong interference signal can be even more significant. With

a 0 dB SIR, a performance gain of more than 12 dB can be expected.

" A receiver fitted with a TDAF which has been given adequate time to adapt

is likely to have a. lower BER than a receiver using a TIAF.

" The TDAF always does at least as well as the TIAF. given adequate time to

adapt.

The disadvantages are:

* The TDAF takes coisid,;, ably longer to adapt than the TIAF. While the TIAF

adapts at each sample time, the TDAF actually only "fractionally" adapts at

each sample time. A full symbol is required to adapt each TIAF in the TDAF

structure.
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" The TDAF would require much more "real estate" if implemented in silicon.
This is clue to the multiplicity of filter coefficients required for the TDAF.

Fortunately, there is little added computational overhead, since the process of

updating filter coefficients is no more frequent for the TDAF than it is for the

TIAF.

" The TDAF is somewhat more complex than the TIAF. This should be clear

since the TDAF is made up of a. bank of parallel TIAFs.

" As SNR at the filtei input decreases, the improvement in Mean Square Error

decreases. By the time the SNR has degraded to less than -10 dB, the per-

formance gain has dropped to under I dB. If that is the case, then given the

other disadvantages of the TDAF, the use of a TIAF might make more sense.

5.2 Recommendations

There are several topics that could (and probably should) have been covered

in the execution of this research. Some of the more urgent are listed below.

1. Investigate the role that the modulation type plays in the performance gain.

By implementing different modulator/demodulator pairs, the simulation can

be used to determine improvement gain as a function of modulation type.

Other modulation schemes might include:

" Quadrature Phase Shift. Keying (QPSK)

" Offset. Quadrature Phase Shift Keying (OQPSK)

" M-ary Frequency Shift Keying (FSK)

" Minimum Shift Keying (MSK)

" Quadrature Amplitude Modulation (QAM)
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2. Implement the TDAF with no external training signal. With some added

complexity, the inconvenience of having to transmit a known preample can be

circumvented (7), and the filter can be allowed to adapt continuously.

3. Implement the TDAF in the frequency domain. The advantage of doing so can

be significant. The cycle frequencies of the signal used in this simulation were

at ±2f,. In the frequency domain, the optimum TDAF is implemented with as

many TIAFs as exist cycle frequencies (7:103). One advantage of fewer TIAFs

may be more rapid adaptation since there woulld be fewer weight vectors to

update.

4. Precalculate an initial weight vector for the adaptive filters. Both TDAF and

TIAF are initialized with zero weight vectors in the simulation presented here.

It should be possible to calculate a "near optimum" solution for the adaptive

filters for a given SOI, and then allow the filter weights adapt from that point.

5. Investigate the apparent inconsistency that exists between the MSE returned

for the LC version and the MSE returned for the BElt version. While the BEIt

consistantly returns smaller Bit Error Rate numbers and MSE for the TDAF,

the MSE returned by the LC version is considerably higher for the TDAF.

6. Determine the improvemcnt of the TDAF over the TIAF for the important

case of multiple interferers.

7. Determine the improvement of the TDAF over the TIAF under the conditions

of siniuiltaneous interference and noise.
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Appendix A. Inpvt Parameters and Output Files for the BEll

Version

The BER version of the simulation prompts the user for the following input

parameters at run time:

" Random bit generator seed. Seeds the random bit generator.

" Random number generator seed. Seeds the AWGN generator.

" Data Sample Rate. The number of samples per bit of the data.

" Format. flag to select between bi-polar and bi-phase baseband format.

* Pulse shaping. A flag to allow or disallow bandlimiting of the baseband data

signal.

" FIR taps The number of coefficients in the non-adaptive FIR filters. All FIR

filters in the simulation then have the same number of taps.

* TIAF taps. The number of filter coefficients for the time independent adaptive

filter. Stated another way, the number of elements of W.

" TDAF taps. The number of filter coefficients for the time dependent adaptive

filter. See Section 2.3.3

" Bandlimiting LPF cutoff frequency. Passed to the simulation in hertz. Both

SOI and SNOI channels use the same cutoff.

" Bandlimiting LPF gain. Allows adjustment of the level of the output of the

pulse shapers.

" SOI carrier amplitude.

" SO0 carrier frequency.
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" SNOI symbol frequency. Expressed as a fraction of the SOI symbol frequency

of 1 symbol per second. May be any positive real number.

" SNOI carrier amplitude.

" SNOI carrier frequency.

" Output LPF gain. Allows adjustment of the demodulator output level.

" Output LPF cutoff frequency. In hertz.

* Demodulator phasc shift. Allows for adjustment of the phase of the bandpass

signal into the demodulator.

" Noise gain. Allows for adjustment of noise power in the unfiltered bandpass

signal.

" Misadjustment. See Section 2.3.3

" Data type fl, q. Allows for selection between a square wave baseband signal or

random data.

• Symbols per epoch. The program writes this number of symbols to a data file

at tie end of a simulation run.

• Number of run cpochs. Used to specify the number of symbols for the entire

simulation (total symbols = symbols per epoch x number of run el-,cls).

" Number of adapllion qochs. Used to specify the length of time the filters are

allowed to adapt.

Each run of the I3ER. Version produces six data files. The files are written into

the current directory. They are:

e tdafvolt.dal The output of the TDAF over the last specified number of symbols

(see above).
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" tiafvolt.dat The output of the TIAF over the same period.

" dsrdvolt.dat The desired filter output over the same period.

" tdafvec.dat The error signal of the TDAF over the same period.

" tiafvic.dat The error signal of the TIAF over the same period.

* numbers.tex A file that contains various data and figures of merit for the

simulation run:

1. The adaptation coefficient for the simulation (see Section 2.3.3).

2. The number of adaptation epochs in the simulation.

3. The total number of epocis in the simulation.

4. The number of post-adaptation symbols in the simulation.

5. The mean squared error for the TDAF.

6. The mean squared error for the TIAF.

7. The number of symbol errors for the TDAF.

S. The number of symbol errors for the TIAF.
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Appendix B. Input Parameters and Output Files for the LC Version

The LC version of the simulation prompts the user for the following input

parameters at run time:

" Random bit generator seed. Seeds the random bit generator.

* Randon number generator seed. Seeds the AWGN generator.

• Data Sample Rate. The number of samples per bit of the data.

" Format. A flag to select between bi-polar and bi-phase baseband format.

" Pulse shz'ping. A flag to allow or disallow bandlimiting of the baseband data
signal.

" FIR taps The number of coefficients in the non-adaptive FIR filters. All FIR

filters in the simulation then have the same number of taps.

" TAF laps. The number of filter coefficients for the time indcpendent adaptivc

filter. Stated another way. the number of elements of W.

" TDAF laps. The number of filter coefficients for the time dependent adaptive

filter. See Section 2.3.3

* Bandlimiling LPF cutoff frequency. Passed to the simulation in hertz. Both

SOT and SNOI channels use the same cutoff.

" Bandlimiting LPF gain. Allows adjustment of the level of the output of the

pulse shapers.

" SO1 carrier amiplitudc.

" SOI carrier fr'equency.
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* SNOI symbol frequency. Expressed as a fraction of the 01 symbol frequency

of I symbol per second. May be any positive real number.

" SNOI carrier amplitude.

* SNOI carrier frequency.

" Output LPF gain. Allows adjustment of the demodulator output level.

" Output LPF cutoff frequency. In hertz.

" Demodulator phase shift. Allows for adjustment of the phase of the bandpass

signal into the demodulator.

" Noise gain. Allows for adjustment of noise power in the unfiltered bandpass
signal.

" Misadjustment. See Section 2.3.3

" Data type flag. Allows for selection between a square wave baseband signal or

random data.

" Nimbcr of epochs. The greater the number of epochs, the better the estimate

of the MSE.

• Number of symbols to average. The MSE from this number of symbols will be

averaged at the end of each epoch to provide an estimate of the MSE.

" Number symbols per epoch. This number of symbols will be applied to the

TDAF and TIAF each epoch.

Each run of version LC produces three data files. The files are written into the

current directory. They are:

tdafirn.dat An estimate of the expected value of the MSE as a function of time

for the TDAF.
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" Iiaflrn.dat An estimate of the expected value of the MSE-as a function of-time

for the TIAP.

" lnitmbers.Iez A file that contains various data and figures of merit for the

simulation run:

1. The adaptation coefficient.

2. The number of symbols represented by the adaptation period.

3. The mean squared error of the TDAF for the last n symbols of the epoch

(where n is selectable at run time).

4. The mean squared error of the TIAF for the last n symbols of the epoch

(where ?i is selectable at. run time).
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Appendix C. Source Code for the BER Version

/****** This program is a simulated digital communication system ******/

/*

I 5 Oct 91: This version of the program has an optimized TDAF.
/ The filter now has a one dimensional vector (rather than a matrix
I as in earlier versions) to hold the values of the input. I made
/ the startling (to me) observation that each row of the input
/ matrix was identical.
/ 7 Oct 91: Added input parameter "frozen" to the adaptive
I filters. When frozen = 0, weights are allowed to adapt.
/ After the filters have been given the specified length of time
/ to adapt, then frozen is set to 1, and filter weights are no
/ longer allowed to adapt.
/ Executable: frzloop
/ ,/

#define sparc 1 /* *1

#include <stdio.h>

#include <math.h>
#include <stdlib.h>

#define pi (4*atan(1.0))
#define data.freq 1.0
#define data-rate 1.0/datafreq
#define sqr(x) (x)*(x)

************************ Function Prototypes ******** v***********i.**$*/

double setcutoff(double samplerate,
double cutoff);

void calcfilterweights(int numdelays,

double omegac,
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dcuble *contents,
double *weights);

int irbit2(unsigned long *bseed);

int datagen(double time,
double datarate,
int lastdata,
double *lasttime,
unsigned long *bseed,
int outputf lag);

double lpf (double input,
int nurndelays,
double *weights,
double *contents,
double gain);

double modulate(double input,
double carrierfreq,
double carrierampl,
double time);

void inittiaf(double *weights,
double *contents,
int numtaps,
double *error,
double *bias);

double tiaf(float inpuit,
float desired,
float mu,
mnt numtaps,
double *error,
double *weights,
double *contents, double *bias,
mnt frozen);

double dernodulate(double input.
do-able caa-rierzireq,
double phase,
double time);

float rani1(int *idum);
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float gasdev(int *idum);

double **inittdafwts (it sampersym,
int numtaps);

double *inittdafconts(int numtaps);

double tdaf (double input,
double desired,
double mu,
int sampersym,
mnt numtaps,
double **tdafwts,
double *tdafconts,
double *error,
double *bias,
int frozen);

double *initerror(int sampersys);

double *initbias(int sainpersym);

void nrerror(char error-text[]);

double *dvector(int nl,
mnt nh);

double **dmatrix(int nrl,
mnt nrh,
int ncl,
int nch);

float *vector(int nl,
int nh);

mnt manchester(int input,
double time,
double datarate,
double lasttime);

void free.Avector(double *v,
mnt nl,
int nh);

void free-dmatrix(double **m,
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int nrl,
int nrh,
int ncl,
int nch);

int bipolar(int input);

int maino{

unsigned long
numsainples,
bbeed,
bitvar=O;

int numsymbols,
nuinfirtaps,
numtiaftaps,
numtdaftaps,
nuinfirdelays,
numtiafdelays,
numloops,
saniplefreq,
count,
outputf lag,
adaploops,
sample,
samplel,
loopnum,
dlt=l,
d2t,
d3t=1,
d4t,
d~t,
d6t,
sampersym,
format,
shape,
tdafbiterror=O,
tiafbiterror=O,
offsetfound=O,
xsamlpe,
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bitcount = 0,

avgloops,
msecount = 0,

nseed,

-frozen0O;

double
samplerate,

datafreq = data-.freq,

datarate = data.rate,

carrierfreq,

carrierampi,
noisegain,

misadjust,
mu,
deltaphase,
gainl,
gain2,
tiafgain2,

avg = 0.0,
tiafavg =0.0,

lpfin..cutoff,
lpfout-cutoff,
ilpfin-.cutoff,
*lpfconts,
*lpfwts,
*tiafwts,
*tiafconts,
*nflwts,
*nlcoflts,

*outweights,
*outcolteflts,

*tiafoutweightS,
*tjafoutcolteflts,

* tiaferror =0.0,

f'iafbias =0.0,

omega-.c,

omega-.cl,

time = 0.0,

sit, s2t, s3t,

s4t, s5t, s6t,

s7t, s8t,

x6t, x7t, x8t,

nnIt, nn2t,
tdafbitnum=0.0,
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tiafbitnum=0.0,
dsrdbitnum=0.0,
s3tlast,
nn2tlast,
lasttime,
**tdafwts,
*tdafconts,
*tdaf error,
*tdafbias,
idatarate,
idatafreq,
ilasttime,
*ilpfconts, *ilpfwts,
igainI,
icarrierfreq,
icarrierampi,
itime =0.25,
iomega-c,
desiredpower,
interfpower;

float
*lnse, *tempmse,
*tiafmse, *tiaftempmse,
adapfactor=0. 1178,
loopf actor;

char
buffer[128];

FILE
*tdafvolt, *tiafvolt,
*dsrdvolt, *tdafvec,
*tiafvec, *numbers;

if ((tdaf volt =fopen("tdafvolt.dat", IV'i)) NULL)
printf ("**Could not open tdafvolt.dat! ***\n)

if ((tiafvolt =fopen("tiafvolt.dat", t"w")', = NULL)
printf (" * Could not open tiafvolt.dat! *** \n");

if ((dsrdvolt =fopen("dsrdvolt.dat", I"w")) == NULL)
printf (" **Could not open dsrdjolt.dat! ***\n)

if ((tdafvec =fopen("tdafvec.dat", tili)) ==NULL)
printf ("**Could not open tdafvec.dat! ***\n;
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if ((tiafvec =fopen("tiafvec.dat", "w")) ==NULL)
printf (" *** Could not open tiafvec.dat! *** -\n");

if ((numbers =fopen("numbers.tex", 1w"9)= NULL)
printf C' *** Could not open tdafnum.dat! *** \n");

User InpuIt Section

printf("Seed the random bit generator:")
gets (buffer);
sscanf(buffer, "%U", &bseed);
printf("Wdn", bseed);

printf("Seed the AWGN Generator (integer < 0):")
gets (buffer);
sscanf(buffer, "U.", &nseed);
printf("YXd\n", nseed);

printf ("Number of samples per symbol required:")
gets(buffer);
sscanf(buffer, "74d", &sampersym);
printf("Mdn", sampersym);

samplefreq =samtpersym*datafreq;
samplerate = (double) 1.0/samplefreq;

printfk-..inchester (,-.Bipolar (1) format:")
gets (buffer);
sscanf(buffer, "U.", &format);
printf ("7.d\n", format);

printf("Pulse shaping? (1=y, 0n):")
gets(buffer);
sscanf(buffer, "U/.", &shape);
printf("7.d\n", shape);

printf ("Number of taps in the FIR filters:")
gets (buffer);
sscanf(buffer, "Uc", &numfirtaps);
printf("/dn", numfirtaps);

numfirdelays = numfirtaps - 1;
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printf("Nunber of taps in che TIAF adaptive filter:")
getLs (buffer);
sscanf(buffer, "Ud", &numntiaftaps);
printf("7.dn", nuintiaftaps);

numtiafdelays nuintiaftaps-1;

printf("Nunber of taps in the TDAF adaptive filter:")
gets(buffer);
sscanf(buffer, "Ud", &numtdaftaps);
printf("/dn", nuxntdaftaps);

printf("SOI pulse shaping LPF cutoff (Hz):")
gets (buffer);
sscanf(buffer, "'/lf", &'~pfin-.cutoff);
printf("/f\n", lpfin.cutoff);

ilpfin-cutoff =lp'fin-cutoff;

printf ("Gain of pulse shaping LPF: I)

gets(buffer);
sscanf(buffer, "'.lf", &gainl);
printf("7.f\n", gaini);

igaini = gaini;

printf ("S01 carrier amplitude:")
gets (buffer);
sscanf(buffer, "Y.lf", &carrieranpl);
printf("%f\n", carrierampl);

desiredpower = (sqr(carrierampl))/2;

printf ("SOl carrier frequency:")
gets(buffer);
sscanf(buffer, "Ylf", &carrierfreq);
printf("7.f\n", carrierfreq);

printf ("Symbol frequency for the interferer:")
gets (buffer);
sscanf(buffer, "Ylf", &idatafreq);
printf("7Xf\n" ,idatafrsq);

idatarate = 1.O/idatafreq;
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prirtfQ'SNOI carrier amplitude: '9;
gets (buffer);
sscanf(buffer, "'.lf", &icarrierampl);
printf("Xf\n", icarrierampi);

interfpower =(sqr(icarrierampl) )/2;

print.f("SNOI carrier frequency:")
gets (buffer);
sscanf(buffer, "UPf, &icarrierfreq);
printf("7.f\n", icarrierfreq);

printf("Gain of output LPF:")
gets (buffer);
sscanf(buffer, "Y/lf", &gain2);
printf("%f\n", gain2);

printf("Output LPF cutoff (Hz):")
gets (buffer);
sscanf(buffer, "Ylf", &lpfout-cutoff);
printf("%f\n", lpfout-.cutoff);

printf ("Phase shift for demodulator:";
gets (buffer);
sscanf(buffer, "UPf, &deltaphase);
printf("Yf\n", deltaphase);

printf("Noise factor:")
gets (buffer);
sscanf(buffer, "UPf, &noisegain);
printf("%/f\n", noisegain);

printf("Misadjustment factor:")
gets (buffer);
sscanf(buffer, "Wl", &misadjust);
printf("%/f\n", misadjust);

i:f (carrierfreq > 0.0)
mu = misadjust/((desiredpower + interfpower +'

sqr(noisegain) )*(numtdaftaps));
else

mu = misadjust/((sqr(carrieraipl) + sqr(icarrierampl) +

sqr(noisegain) )*(numtdafecaps));
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fprintf(numbers,"Mu = '/f\n", mu);
printf ("Random data (1) or square wave (0):")
gets (buffer);
sscanf(buffer, "74d", &outputflag);
printf("%/d\n", outputf lag);

printf("Number of symbols in one epoch:")
gets (buffer);
sscanf(buffer, "'u", &numnsYmbols);
printf("Wdn", nuinsymbols);

numsawmples = numsymbols*sampersym;

adaploops = ((adapfactor/mu)/numsymbols);

printf ("Number of epochs to average:")
gets (buffer);
sscanf(buffer, "U/,", &avgloops);
printf("'Ldn", avgloops);

printf("Nunber of adapation epochs:")
gets (buffer);
sscanf(buffer, "'Ad", &adaploops);
printf("'Ad\n", adaploops);

numloops = adaploops + avgloops;
:printf(numbers,"Number of adaptation epochs: 'A\n", adaploops);
fprintf (numbers,"Total number of epochs: Yd\n", numnloops);
printf ("Total number of epochs: Wdn", numloops);
fprintf (numbers, "lotal number of post-adaptation symbols: 'h\n",

nuxsymbols*avgloops);
loopf actor 1.0/(numloops);

Initialization Section

if (shape ==1){

lpfconts =dvector(0, numfirdelays);
lpfwts =dvector(0, numfirdelays);
ilpfconts = dvector(i, numfirtaps);
ilpfwts = dvector(l, numfirtaps);
omega-c = setcutoff(samplerate, lpfin..cutoff);
iomega-c =setcutoff(sanplerate, ilpfin..cutoff);
calcfilterweights (numfirdelays, omega.c, lpfconts, lpfwts);
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calcfilterweights (numfirdelays, iorega-c, ilpfconts, ilpfwts);

I}

if (carrierfreq > 0.0){
outweights =dvector(0, nuinfirdelays);
outcontents dvector(0, numfirdelays);
tiafoutweights =dvector(0, numfirdelays);
tiafoutcontents =dvector(0, nuinfirdelays);
nnwts =dvector(0, nuinfirdelays);
nnconts =dvector(0, nuinfirdelays);
omega-.cl setcutoff(sarnplerate, lpfout-cutoff);
calcfilterweights (nuinfirdelays, omega-cl, outcontents,

outweights);
calcfilterweights (nuinfirdelays, olnega-.cl, tiafoutcontents,

tiafoutweights);
calcfilterweights (nuinfirdelays, omega-.cl, nnconts, nnwts);

}ift vco(, utadly)

tiafwots = dvector(, nuntiafdelays);

tiaf ct =o dvsaer(,nutafeay)

tmse = vectorO, nusaples-1);
ternpmse = vectorCO, nuxnsaniples-1);
tiaftmse = vectorO, numsamples-1);

for (sample = 0; sample < numsaxnples; ++Isample){
mse[sanple] = 0.0;
tempmse[sample] = 0.0;
tiafmsetsample) = 0.0;
tiaftempmsersample] = 0.0;

inittiaf(tiafwts, tiafconts, numtiaftaps, &tiaf error, &tiafbias);
tdafwts = inittdafwts(sampersym, nunitdaftaps);
tdafconts = inittdafconts(numtdaftaps);
tdaf e.ror = initerror(sampersym);
tdafbias = initbias(saxnpersym);
time = inl(&nseed);
lasttime = time-datarate;
itime = rail(&nseed);
ilasttime = itime-idatarate;

Simulation Section
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for (loopnum, 1; loopnum <= numloops; .i+loopnum){
for (sample = 0; sample < numsaxnples; ++sample){

Interference (SNOI) Section

if (icarrierampi > 0.0){
dit = datagen(itime, idatarate, dit, &ilasttime,

&bseed, outputf lag);

if (format == 0

d2t = man-hlester(dit, itiine, idatarate, ilasttime);
else

d2t = bip.,.ar(dit);

if (shape == 1)
sit = lpf(d2t, nuinfirdelays, ilpfwts, ilpfconts, igaini);

else
sit = d2t;

if (carrierfreq > 0.0)
s2t = modulate(sit, icarrierfreq, icarrieranpl, itime);

else
s2t = sit;

else
s2t = 0.0;

Signal (S01) Section

d3t =datagen(time, datarate, d3t, &lasttime,
&bseed, outputf lag);

if (format == 0)
d4t = manchester(d3t, time, datarate, lasttime);

else
d4t = bipolar(d3t);

s3tlast = s3t;
if (shape == 1)

s3t =lpf(d4t, numfirdelays, lpfwts, lpfconts, gaini);
else



s3t =d4t;,

if (carrierfreq > 0.0)
s4t = modulate(s3t, carrierfreq, carrieranpi, time);

else
s4t = s3t;

Channel Section

s5t = s4t + s2t + gasdev(&nseed)*noisegain;

TDAF Receiver Section

s6t =tdaf(s5t, s4t, mu, sampersym, nurntdaftaps, tdafwts,
tdafconts, tdaf error, tdafbias, frozen);

if (carrierfreq > G, '
s7t =demodulate( -t, carrierfreq, deltaphase, time);
s8t = lpf(s7t, numfirdelays, outweights, outcontents,

gain2);

else
s8t = s6t;

TIAF Receiver Section

x6t =tiaf(s5t, s4t, mu, numtiaftaps, &tiafLerror,
tiafwts. tiafconts, &tiafbias, frozen);

if (carrierf req > 0.0) {
x7t = demodulate(x6t, carrierf req. deltaphase, time);
x8t = lpf(x7t, numfLirdelays, tiafoutweights,

tiafoutcontents, gain2);

else
x8t = x6t;

Noise Free Section

.3



nn2vlast =nn2t;
if (carrierf req > 0.0){

rnlt = demodulate(s4t, carrierf req, deltaphase, time);
nn2t = 1pf(nnlt, numfirdelays, nnwts, nnconts, gain2);

else
nn2t =s4t;

time += sainpierate;
itime 4= samplerate;

End of Receiver section

if (Ooffsevfound) && (loopnum == adaploops +i))
if ((nn2t > 0.0) && (nn2tlast <0.0)) 11

((nn2t < 0.0) && (nn2tlast > 0.0)) f
bitvar = 0;
tdafbitnum = 0;
tiaf bitnum =-0;
dsrdbitnum = 0;
offsetfound = 1;

if (loopnum == numloops) f
fprintf(dsrdvolt, "%/d U'/f", sample, nn2z);
fprint-f(tdatvolt, "%i '/f\n", sample, s8t);
fprintf(tiafvolt, "YXi '.f\n", sample, x8t);

if (loopnum > adaploops) f
frozen = 1;
vempmsesanpie]=sqr(s4t-s6r)/desiredpower;
tiaftempmse Esample] =sqr(s4t-x6t) /d-esiredpower;
if (format){

++bitvar;
tdafbitnum += s8t;
tiafbitnum 4=xt
dsrdbitnum += nn2t;
if (!bitvar %A sampersym)){

if (((tdafbitnum > 0.0) &&(dsrdbitnum < 0.0)) I
((tdafbitnum < 0.0) && (dsrdbivnum > 0.0)))

++tdafbicerror;
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if (((tiafbitnun > 0.0) && (dsrdbitnum < 0.0)) I
((tiafbitnun < 0.0) && (dsrdbitnuu > 0.0)))

++tiafbit error;
++bitcount;
tdafbitnum = 0.0;
tiafbitnum = 0.0;
dsrdbitnum = 0.0;

} * end if(format) *
} /* end if(loopnum>adaploops) *

} /* Ends inner FOR loop *

if (loopnum > adaploops){
++msecount;

for (samplel =0; samplel < numsaxnples; ++samplel){
mse~sampleil+=tempmse[samplel];
tiafmse[saxnplel]+=tiafiemp.mse[sanplei];

I

} * Ends outter FOR loop *

for (sa-.ple = 0; sample < numsamples; +I+sample){
fprin-tf(tdafvec,"%i %f\n", sample, (float) mse[samplel/msecount);
fprintf(tiafvec,"YXi Y.f\n", sample,

(float) tiafmse[samplel/msecount )

avg = 0.0;
tiafavg = 0.0;
count = 0;
for (sample = 0; Sample < numsamples; ++samnple){

avg += (double) msersainple]/rnsecount;
tiafztig += (double) tiafmse[sample]/msecount;
++count;

avgf=count;
tiafavg/=count;
fprintf (numbers, "averaie error for TDAF: '/f\r.", avg);
fprintf(numbers,"a-.erage error for TIAF: 7.f\n", tiafavg);
fprintf (numbers ,"number of zdaf bit errors: 7/.d ", tdafbiterror);
fprintf(nunbers,"f or a bit error rate of %f\:.i", (float)

tdafbi terror/bitcount);
fprintf(numbers,"number of tiaf bit errors: 7.d ", tiafbiterror);
fprintf(numbers,"for a bit error rate of Yf\n", (float)

tiafbiterror/bitcovt it);



fclose(tdafvolt);
fclose(tdafvolt);

fclose(dsrdvolt);
fclose(tdafvec);
fclose(tiafvec);
fclose(numbers);

return 0;

} /* Ends maino */

************* ******** *** **** ***** ************** ** *** ***

double setcutoff(double samplerate, double cutoff) {

double temp = (2 * pi * cutoff * samplerate);

return temp;
I

void calcfilterweights(int numdelays, double omegac,

double *contents, double *weights) {

int count = -1;
double normfactor = 1.0;

double temp, window;
double *contentsptr = contents;
double *weigh-ptr = weights;
double *array-end = weights + numdelays + 1;
double M = numdelays;
for ( weight-ptr = weights; weight.ptr < array-end; ++weight-ptr ) {

count += 1;
*contents-ptr = 1.0;
++contents-;5tr;
temp = count - (M/2);

window = 0.54 - 0.46*cos(2*pi*count/(M));

if (temp == 0) {
*weight-ptr = window*normfactor;

I
else
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*weight-.ptr =window* (sin(omega-.c~temp) )/(pi*temnp) *normf actor;

#define IBI 1
#define 1B2 2
#define lBS 16
#define IB18 131072
#define MASK IB1+1B2+1IBS

int irbit2(unsigned long *bseed){

if (*bseed & 1B18) {

*bseed = (( *bseed MASK) << 1) IIi;
return 1;

I-
else{

*bseed <<= 1;
return 0;

int datagen(double time, double datarate, int lastdata, double
*lasttime, unsigned long *bseed, mnt outputf lag){

ant temp;
if (time >= (*lasttime + datarate)) -{

*lasttime = time;

if (outputflag == 1){
temp = irbit2(bseed);

3-
else

temp = -lastdata;

else
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temp = lastdata;

return temp;

}

double lDf(double input, int numdelays, double *weights,
double *contents, double gain) {

int count;
double sum = 0;
double *contents-ind = contents + (numdelays);
double *weights-end = weights + (numdelays);

for (count = numdelays; count > 0; --count) {

*(contents-end) = *(contents-end - 1);

sum += *weights-end * *contentsend;

--contents-end;
--weights-end;
I

*contents = input;
sum += *weights * *contents;

return sum * gain;

double modulate(double input, double carrierfreq,
double carrierampl, double time) {

double temp = input*carrierampl*cos(2*pi*carrierfreq*time);
return temp;
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double demodulate(double input, double carriekrfreq,
doubic phase, double time){

double temp = 2 * input * cos(2 *pi *carrierfreq*

time + phase);
return temp;

1* The following routine was taken from
"Numerical Recipes in C" by Press et al. *

#define M1 259200
#define M~ 7141
4define IC1 54773
#define R111 (1.0/Mi)
4define M2 134456
#define 1A2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define 1A3 4561
#define 1C3 51349

float ranl(int *idun){

static long ixl,ix2,ix3;
static float r [98];
float temp;
static mnt iff=O;
mnt j;
void nrerroro;

if (*idum < 0 11 iff ==0){

iffl1;
ixl=(IC1-(*idum)) 7,M1;
ixl=(IA1*ixl+ICl) 7.M1;
ix2=ixl % M2;
ixl=(IA1*ixl+IC1) 7.Ml;
ix3=ixl % M3;
for (j1l;j<=97;j++){

ixl=(IA1*ixl+IC1) 7.M1;
ix2=(IA2*ix2+1C2) 'AM2;
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r[j]=(ixl+ix2*ftM2)*RMI;

*iduxn=1

ixl=(IA1*ixl+IC1.) 7 MI;
ix2=(IA2*ix2+IC2) XM2;
ix3=(1A3*ix3+IC3) % M3;
j=1 + ((97*ix3)/M3);
if (j > 97 11 j < 1) nrerror("RANI: This cannot happen.");
cempr[j];
r[j]=(ixl+ix2*RM2)*RMl;
return temnp;

3.de M

#undef M
#undef ICl

itundef RMI
#undef, M2
#undef !A2
#undef 102
ttundef RM2
#undef M3
#undef IA3
#undef IC3

/* The following routine was taken from
"Numerical Recipes in C" by Press et al. *

float gasdev(int *idum){

static mnt iset=O;
static float gset;
float fac,r,vl,v2;
float ranlO;

if (iset == 0){
do {

v1=2.0*ranl(idum)-l .0;
v2=2.O*ranl(idum)-l .0;
rvl*vl+V2*v2;

3while (r >= 1.0 11 r == 0.0);
fac~sqrt(-2.O*log(r)Ir);
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gsetvl*fac;
isetl1;

return v2*fac;
}else{

iset0O;
return gset,

double **inittdafwrs(int saxnpersym, nint nuxntaps){

int rownum, colnum;
double **tdafwts;
tdafwts = dmatrix(1, sampersym, 1, numtaps);

for (rownum = 1; rownum <= sampersym; +.irownun)

for (colnum = 1; colnum <= nuintaps; ++colnum)

tdafwts[rownum][colnun] = 0.0;

return tdafwts;

double *inittdafconts(int numtaps){

int tapnun;
double *tdafconts;
tdafconts = dvector(i, numtaps);
for (tapnum = 1; tapnum <= numtaps; ++tapnm)

tdafconts~tapnum] = 0.0;
return tdafconts;

doute tdaf(double input,-double desired, double mu,
iut sanipersym, int numtaps, double **tdafwts,
double *tdafcionts, double *error, double *bias, int frozen){
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/ This routine is the Time Dependent Adaptive Filter.
~/

/ Input Parameters:
~/

/ input:- The value to be filtered-.
/ desired: The training signal.
/ mu: Used to calculate-the filter weights.
/ sampersym: The number of samples per symbol of
/ the input baseband data sequence.
/ The TDAF is made up of sampersym
/ TIAFs.
/ numtaps: The number of taps in each of the
/ member TIAFs making up the TDAF.
/ tdafwts: An n by m array where n = numtaps and
/ m = sampersym containing the current
/ filter coefficients of the TDAF.
/ tdafconts: A vector that holds the past values
/ of the input.

/ error: A vector of length
/ sampersym that contains the quantity
/ "desired - sum" (see sum below) for each
/ TIAF in the TDAF.
/

/ Local Variables:
/
/ callnum: Used to calculate which TIAF supplies
/ the output for each call to the function
/ tapnum: Indexing variable for the taps of each
/ TIAF.
/ filternum: The index that points to the TIAF
/ that supplies the output of the function.
/ sum: Holds the intermediate and final value
/ of the output of the function.
/

static int callnum = 0;
int tapnum, filternum;
double sum = 0.0;
filzernum = (callnum % sampersym) + 1;
++calln-im;
/* Shift data in filter to the right... */
for (tapnum = numtaps; tapnum > 1; --tapnum) {

tdafconts[tapnum] = tdafconts[tapnum - 1];
/* and calculate the output due to the past values */
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sum=+= tdafconts [tapnum] *tdafwts [fil-ernum) [tapnum]--;

/* Now-shift the-input into tap-number 1I*
tdafcontsBl] = input;
sum +=tdafconts-[1] * tdafwts[filternum] [1];
/* Add-the contribution due to the bias weight *
sum +-_ bias~filternum];
/* Calculate the error *
error~filternum] = desired - sum;
/* Update the filterweight-s for the -next call *
if (!frozen) f

for (tapnum. = 1; tapnum-< numftaps; +--tapnum){
tdafwts[filternum][tapnum] += 2 *mu *error~filternum]-

*tdafconts[tapnum];

1* Update the bias weight *
bias~filternum] += 2 *mu *error[filternum];d

return sum;

double *initerror(int sampersym){

mnt filternum;
double *error;
error = dvector(l, sampersym);
for (filternum = 1; filternum <= sampersym; +-'filternum)

error~filternum] = 0.0;
return error;

doutbLe *initbias(int sampersym) f

mnt filternum;
&duble *bias;
bias -dvector(l, sampersym);-
for (fileternuml ;filternum<=sampersyii;++filternum)

!aias[filternum] 0.0;
return bias;
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/* The following routine was taken from
"Numerical Recipes in C" by Press-et al. *

void nrerror(char error-text[])

fprintf(stderr,"Nunerical Recipes run-time error... .\n");
fprintf(stderr, "%s\n" ,error-text);
fprintf(stderr,". ..now exiting to system... \n");
exit (1)

/* The following routine was taken from
"Numerical Recipes in C" by Press-et al. *

double *dvector(int nl, nt nh){

double *v;

v=(double *)malloc( (unsigned) (nh-nl+l)*sizeof(double));
if 00v~ nrerror("allocation failure in dvectoro-");
return v-nl;

1* The following routine was taken from
"Numerical Recipes in C" by Press et al. *

double **dmatrix(int nrl, mnt nrh, int ncl, mnt nch){

mnt i;
double **m;

m=(double **) malloc( (unsigned) (nrh-nrl+!)*sizeof(double*l);
if O~m) nrerror("allocation failure 1. in dmatrixo");
m -~ nrl;

for(iPnrl;i<=nrh;i++){
m[i)=(double *) malloc( (unsigned) (nch-nclq+1)*sizeof(double));
if (!m~i]) nrerror("allocation failure 2 in dmatrixo");
m~iJ ncl;
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return- m;

int manchester(int input, double time, double datarate, double lasttime){
int tempi, temp2:
if ( time > (lasttime + datarate/2.O))

tempi abs(input-1);
else

templ input;
if (tempi = 1)

temp2 =1

else
temp2 -;

return temp2;

1* The following routine was-taken from
"Numerical Recipes in C" by Press et al. *

void free-dmatrix(double **m, int nrl, int nrh, int ncl, int nch)

int i:1

for(inrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

/* The following routine was taken from
"Numerical Recipes in C" by Press et Al. *

void free..dvector(double *v, mnt nl, int nh)

free((char*) (v+nl));

/* The following routine was taken from
"Numerical Recipes in C" by Press et al. *
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float *vector(int nl,int nh){

float *v;

v=(float *)malloc((unsigned) (nh-nl+1)-*sizeof(floaI,)
if (!v) nrerror("allocation failure in vectoro")-;

return v-nl;

void inittiaf (double *weights, double *contents, int numtaps,
double *error, double *bias){

int count;
*error =0.0;
*bias =0.0;
for (count = 0; count < numtaps; ++count){

*(weights + count) =0;

*(contents +I count) =0;

double tiaf (float input, float desired, float mu, int numtaps,
double *error, double *weights, double
*contents, double *bias, int frozen){

int nunidelays = numtaps - 1;
int count;
doul'le sum =0.0;

for (count = nuindelays; count > 0; --count){

contents[count] = contents[count-1]

sum += contents [count] * weights [count];

contents[0] =input;
sum += contents[0] *weights[0];
sum += *bias;
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*error desired - sum;

if (!frozen) {
for (count = 0; count < numtaps; ++count)

weights[count] += 2 * mu * *error * contents[count];

*bias += 2 * mu * *error;

return sum;

}

int bipolar(int input) {

if ( input == I)
return 1;

else
return -1;

}
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Appendix D. Source Code for the LC Version

/**** This program is a simulated digital communication system ******.1
/************************************,**************************** i*/

/* 30 Sep 91: Made number of symbols for simulation user selectable /
I Executable file: lrncrv/* ** **** ** *** ** **** **** **** *********** ****** * **** **** ***** *4**********/

#define sparc 1

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define pi (4*atan(1.O))

#define data.freq 1.0
#define data-rate 1.O/datafreq
#define sqr(x) (x)*(x)

/* Function Prototypes */

/* Refer to Appendix A - All Functions are the same */

int main() {

unsigned long numsamples;
int numfiraps, numtiaftaps, numtdaftaps;
int numfirdelays, numtiafdelays;
int numloops;
int samplefreq;
int count;
int outputflag;
int numsym;
float loopfactor;
double samplerate;
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double datafreq =data-.freq;
do~lble datarate =data-.rate;

double carrierfreq;I
double carrieranpl;
double noisegain;i
double misadjust;
double mu;
double deltaphase;
double gaini;
double gain2;
double tiafgain2;
dvuDle avg = 0.0;
double tiafavg = 0.0;
double lpfinscutoff, lpfout-cutoff, ilpfin-.cutoff;
char buffer[128];

double *lpfconts, *lpfwts;
double *nnwts, *nnconts;
double *tiafwts, *tiafconts;
double *outweights, *outcontents;
double *tiafoutweights, *tiafoutcontents;
double *mse, *tempmse;
double *tiafmse, *tiaftempriise;
double tiaferror =0.0;
double tiafbias 0.0;
int sample, samplel, loopnum;
int dlt=i, d2t, d3t=I, d4t, d5t, d6t;
int sampersym;
int format;
int shape;
double omega-c;
double omega-ci;
double time =0.0;
double sit, s2t, s3t, s4t, s5t, s6t, s7t, s8t;
double x6t, x7t, x8t;
double rmit, nn2t;
unsigned long int bseed;

int nseed;
double lasttime =-datarate;

= double **tdafwts;
double *tdafconts;
double *tdaf error;
d ouble *tdafbi~s;
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double *tdafsymbolmse;
double *tiafsymbolmse;
int msecount;
mnt rnsesize;
int mseindex =0;

int nuinsymbols;
double idatarate;
double idatafreq;
double ilasttime;
unsigned long int ibseed;
double *ilpfconts, *ilpfwts;
double igaini;
double icarrierfreq;
double icarrierampl;
double itime = 0.25;
double iomega-c;
float adapf actor = 0.1178;
double desiredpower;
double interfpower;
mnt loopcount =0;

FILE *tdaflrn, *tiaflrn, *lnuinbers;

if ((tdaflvn =fopen("tdaflrn.dat", IV')) ==NULL)
printf ("**Could not open tdaflrn.dat! ***\n)

if ((tiaflrn =fopen(I'tiaflrn.dat", IV')) ==NULL)
printf ("**Could not open tiaflrn.dat! ***\n)

if ((lnuxnbers =fopen("lnumbers.tex", "w")) ==NULL)

printf ("**Could not open lnumbers.tex! **\n");

printf("Seed the random bit generator: )
aets(buffer);
sscanf(buffer, IIU

t
I, &bseed);

printf("Yd\n", bseed);

printf ("Seed the AWGN Generator (integer < 0):")
gets (buffer)-;
sscanf(buffer, "/d,&nseed);
pifintf("%d\n", nseed);

printf("Number of samples per symbol required:")
gets(buffer);
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sscanf(buffer, "d,&sampersym);
printf(1"Xd\n", sainpersym);

saxnplefreq = sampersym*datafreq;
samplerate =(double) 1.O/samplefreq;

printf("Manchester (0) or Bipolar (1) format:-~");
= gets(buffer);

sscanf(buffer, "U~", &format);
printf("Wdn", format);

printf("Pulse shaping? (1=y, O0n): "1);

gets (buffer);
sscanf(buffer, "Yd", &shape);
printf("YWdn", shape);

printf ("Number of taps in the FIR filters:")
gets (buffer);
sscanf(buffer, "UI~", &numfirtaps);
printf("7.dn", numfirtaps);

numfirdelays = numfirtaps - 1;

printf("Nunber of taps in the TIAF adaptive filter: )

gets(buffer);*
sscanf(buffer, "%V.d, &numtiaftaps);
printf("7.dn", numtiaftaps);

numtiafdelays =numtiaftaps-1;

printf("Number of taps in the TDAF adaptive filter:")
gets (buffer);
sscanf(buffer, "Yd", &numtdaftaps);
printf("Yd\n", numtdaftaps);

printf("SOI pulse shaping LPF cutoff (Hz):")
gets (buffer);
sscanf(buffer,_"%,lf", &lpfin-cutoff);
printf("7.fn", lpfin-.cutoff);

ilpfin-.cutoff =lpfin-cutoff;

printf("Gain of pulse shaping LPF:")
gets(buffer);
sscanf (buffer-, "Y.lf, -&gainl);
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printf("7.f\n", gaini);

igaini = gaini;

printf("SOI carrier amplitude:")
gets (buffer);
sscanf(buffer, "%lf",-&carrieranpl);
printfQ'%f\n", carrierampj.);

desiredpower = sqr(carrierampl)/2;

printf("SOI carrier frequency:")
gets (buffer);
sscanf(buffer, 11/lf", &carrierfreq);
printf("%f\n", carrierfreq);

printf("Symbol frequency for the interferer: )
gets (buffer);
sscanf(buffer, '1%lf", &idatafreq);
printf("Yf\n" ,idatafreq);

idatarate = 1.O/idatafreq;

printf("SNOI carrier amplitude: )
gets (buffer);
sscanf(buffer, tI17f I, &icarrierampl);
printf("%f-\n, icarrierampi);

interfpower = sqr(icarrierampl)/2;

printf("SNOI carrier frequency:")
gets(buffer);
sscanf(buffer, "7,lf", &icarrierfreq);
printf("7%f\n", icarrierfreq);

printf("Gain of output LPF: )
gets(buffer);
sscanf(buffer, "Ylf", &gain2);-
printf ("Yf\n", galin2);

printf("Output LPF cutoff (Hz): )
gets(buf-fer);-
sscanf(buffer., 117.lf", &lpfbut~cutoff);



printf ("Phase shift for demodulator:")
gets(buffer);
sscanf(buffer, "7.lf", &deltaphase);
printf("7.f\n", deltaphase);

printf("Noise factor:")
gets(buffer);
sscanf(buffer, "Y.lf", &noisegain);
printf("/f\n", noisegain);

printf("'Misadjustment factor:")
gets(buffer);
sscanf(buffer, "Ylf", &misadjust);
printf("Y.f\n", misadjust);

if (carrierfreq > 0.0)
mu =misadjust/(desiredpower + interfpower +

sqr(noisegain) )*(ntuntdaftaps));
else

mu = misadjust/((sqr(carrierampl) + sqr(icarrierampl) +

sqr(noisegain) ) *(numtdaftaps));

printf("Mu =%.10g\n", mu);
fprintf(lnuxnbers,"Mu = 7X.10g\n", mu);

printf ("Random data (1) or square wave (0):")
gets(buffer);

sscanf(buffer, "Y.d", &outputf lag);
printf("%/d\n", outputf lag);

printf ("Number of epochs: )

gets(buffer);
sscanf(buffer, "Ud", &numloops);
printfQ'7.d\n", numloops);

printf("Number of symbols to average:")
gets (buffer);
sscanf(buffer, "74d", &numsym);
printf("%/d\n", nuinsym);

printf("Nuxnber of symbols in simulation: )

gets (buffer);
sscanf(buffer, "Ud", &numsymbols);
printf("Yd\n", nuxnsymbols);
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numsamples =nunisymbols *sainpersym;
fprintf(lnumbers,"Number of symbols in learing curve: Ydi"

nunisymbols);

loopf actor = 1.0I(numloops);

if (shape == 1) {
lpfconts =dvector(0, nuxnfirdelays);
lpfwts dvector(0, numfirdelays);
ilpfconts = dvector(l, nuinfirtaps);
ilpfwts = dvector(1, nuinfirtaps);
omega-c = setcutoff (sainpierate, lpfin-.cutoff);
iomega.c = setcutoff(saxnplerate, ilpfin-cutoff):
calcfilterweights (numfirdelays, omega-.c, lpfconts, lpfwts);
calcfilterweights (num'firdelays, iomega-c, ilpfconts, ilpfwts);

if (carrierfreq > 0.0) f
outweights =dvector(0, nuinfirdelays);
outcontents =dvector(0, nuxnfirdelays);
tiafoutweights = dvector(O, numfirdelays);
tiafoutcontents =dvector(0, numfirdelays);
nnwts = dvector(0, numfirdelays)',
nnconts dvector(0, numfirdelays);
omega-cl =setcutoff(samplerate, lpfout-.cutoff);
calcfilterweights (numfirdelays, omega..cl, outcontents,

outweights);
caJlcfilterweights (numfirdelays, omega-cl, tiafoutcontents,

tiafoutweights);
calcfilterweights (nuinfirdelays, omega-cl, nnconts, nnwts);

tiawsdetr, utadly)

tiafcots = dvector(, numtiafdelays);

msesize = numsaxnples/sainpersym;
mse = dvector(0, msesize - 1);
tempmse = dvector(0, msesize - 1);
tiafmse = dvector(0, msesize - 1);
tiaftempinse = dvector(0, msesize - 1);
tdafsymbolmse = dvector(0, salnpersym-1);
tiafz-ymbolmse =dvector(0, saxnpersym-1);

for (sample = -0; sample < insesize; ++samnple) f
mse~saxnple] = 0.0;
tempmse~sample] =0.0;
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tiafmsersanple] =0.0;
tiaftempmse~sanple] = 0.0;

for (loopnum = 1; loopnum <= numloops; ++loopninn){
inittiaf(tiafwts, ti afconts, numtiaftaps, &tiaferror, &tiafbias);
tdafwts = inittdafwts(sampersym, numtdaftaps-);
itdafconts =inittdafconts(nuntdaftaps);
tdaf error = initerror\(sampersym);
dafbias = initbias(sanpersym);

msecount = 0;
time =rani(&nseed);
lasttime = time-datarate;
itime =rani(&nseed);
ilasttime = iime-idatarate;

for (sample = 0; sample < numsamples; +i+sample){

Interference (bNOI) Section

if (icarrieranpl > 0.0){
dit = datagen(itime, idatarate, dit, &ilasttime,

&ibseed, outputf lag)-;

if (format =-0)
d2t =nianchester(dit, itime, idatarate, ilasttime);

else
d2t = bipolar(dit);

if (shape == 1)
sit = lpf(d2t, numfirdelays, ilpfwts,-ilpfconts, igaini);

else
sit =d2t;

if (carrierf req > 0.0)
s2t = modulate(sit, icarrierfreq, icarrierampi,ita)

else
s2t =sit;

else
s2t =0.0;

Signal (SOI) Section
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d3t =de-tagen~time, datarate, d3t, &lasttime,
&bseed, outputf lag);

if (format == 0)
d4t =manchester(d3t, time, datarate, lasttivop~

els'e

d4t =bipolar(d3t);

if (shape ==1)
s3t =lpf(d4t, nuxnfirdelays, lpfwts, lpfconts, au.

else
s3t = d4t;

if (carrierfreq > 0.0)
s4t modlulate(s3t, carrie:7freq, carrierampl, time);

else
s4t s3t;

Channel Section

s5t =s4t + s2t + gE~sdev(&nseed)*noiseg.o,;

TDAF Receiver Section

s6t = tdaf(s5t, s4t, mu, sanipersym, numtdaf taps, tdafwts,
tdafconts, tdaf error, tdafbias)-;

if (carrierfreq > 0){
s7t = demoduiate(s6t, carrierfreq, deltaphase, time);
s8t = lpf(s7t, nunifirdelays, outweights, outcontents,

gain2);

else
s8t = s6t;

TIIAF Receiver Section
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x6t =tiaf(s5t, s4t,-mu, numtiaftdps, &tiaferror,
tiafwts, tiafzonts, &tiafbias);

if (carr.ierfreq > 0.0){
x7t demodulatek'x6t,-carrier-freq, deltaphase, t.ime);
x8t lpf(c7t, numfirdelays, tiafoutweights,

tiafoutcontents, gain2);

else
x8t =x6t;

Noise Free Section

if (carrierfreq > 0.0) {
nnlt = demodulate(s4t, carrierfreq, deltaphase, time);
nn2t = lpf~nnit, numfirdelays, nnwts, nnconts, gain2);

else
nn2t = s4t;

tim~e 4= samplerate;
itime 4= sainpierate;

mseindex = sample % saxnpersym;
tdafsymbolmse [mseindex] = (sqr(s4t-sbt) )/(desiredpower);
if (mseindex == (sainpersym - 1)W

avg = 0.0;
for (sainplel = 0; samplel < sampersym; +-'samplel){

avg 4= tdafsymbolmse[samplei];

tempmse[msecountJ, avg/sampersym;
4+msecoult;

if (sample < msesize)
tiaftempmse[sample] =(sqr(s4t - xdt))/(d-esixcd-power);

)/* Ends inner FOR loop *
+*loopcount;
for (samplel = 0; saxnplel < msesize; ++samplel){

mse [samplel) -=tempmse [sampleli;
tiafmse[sampleii+reiaftempmse[samplel];

free~matrix(tdafvwts, 1, sampersym, 1, numtdaftap%-);
free..dvector(tdafconts, 1, nuintdaftaps);
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free..dvector(tdaf error, 1, sampersym);
free..dvector(tdafbias, 1, sampersym)-;

}/* Ends outter-FOR loop *

for (sample -- 0; sample < msesize; ++sample){
fprintf(tdaflrn, "%i %f~n", sample, (float) mse [sample] /loopcount);
fprintf (tiaflrn, "%i %f\n", sample,

(float) tiafmsetswmple]*loopfac-tor);

avg =0.0;
tiafavg = 0.0;[ count =0;
forIi (sample = 0; sample < msesize-nunsym; 4+sample){

avg += mse[sample]/loopcount;
tiaf avg += tiafmse [sample] /loopcount;
++Count;

}v/cut
tavg/= count;

fpripntf(lnumbers,"average error -for TDAF over %d samples: %f\n",
numsym, avg);

fprintf(lnuxnbers,"average error for TIAF over %d samples: %f\n",
numsym, tiafavg);

fclose(tdafJ.rn);
fclose(tiaflrn);
fclose(lnumbars);

return 0;

I /* Ends main()*
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